
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

On the Space-Efficiency of the “Ultimate Planar Convex Hull Algorithm”

Jan Vahrenhold∗

Abstract

The output-sensitive “ultimate planar convex hull algo-
rithm” of Kirkpatrick and Seidel [16] recently has been
shown by Afshani et al. [1] to be instance-optimal. We
revisit this algorithm with a focus on space-efficiency
and prove that it can be implemented as an in-place
algorithm, i.e., using O(1) working space.

1 Introduction

How much working space does an algorithm require?
This question may be asked on its own accord, but
there are important practical implications as well. In so-
called resource-constrained systems, at least one of the
resources needed for working on a problem instance is
limited by practical constraints and thus scarce relative
to the size of the problem instance. Examples include
sensors or smartphones where memory and energy are
limited, but also workstations where the main memory
is scarce relative to terabyte-sized or larger data sets.

In this note, we are working in the space-efficient
model of computation, where the primary objective is
to analyze the space an algorithm needs in addition to
representing the input. An algorithm is said to be in
situ if it requires O(logN) extra words of memory, and
it is said to be in-place if the extra space requirement is
O(1) words. Since the input elements must not be de-
stroyed or modified, an in-place algorithm can be seen as
permuting the input such that it represents the output.
As usual, we assume that a word of memory is capa-
ble of representing an input element or an index, thus,
when measured in bits, these space bounds translate to
O(log2 N) bits and O(logN) bits.

The study of space-efficient algorithm goes back to
fundamental one-dimensional problems such as sorting,
merging, and selecting [12, 17, 21]; in the past decade,
it has been extended to problems for point sets in two
and three dimensions [4, 5, 6, 7, 8, 10, 13, 14, 19, 20].
Recently, also problems for polygons and special classes
of graphs have been investigated in the space-efficient
model of computation [2, 3].

∗Department of Computer Science, Westfälische Wilhelms-
Universität Münster, jan.vahrenhold@uni-muenster.de. Part of
this work has been supported by Deutsche Forschungsgemein-
schaft (DFG) within the Collaborative Research Center SFB
876 “Providing Information by Resource-Constrained Analysis”
(http://sfb876.tu-dortmund.de), project A2.

Among the above results, two are of particular impor-
tance for our work: Brönnimann et al. [8] investigated
the space-efficiency of planar convex hull algorithms,
i.e., the complexity of computing the H-element con-
vex hull of a set of N points in two dimensions. The
authors proved that both the “ultimate” algorithm by
Kirkpatrick and Seidel [16] and its simplified variant by
Chan, Snoeyink, and Yap [11] can be implemented as
in situ algorithms, i.e., using O(logN) extra words of
space, while maintaining an output-sensitive, optimal
running time of O(N logH). Since, however, not only
Graham’s optimal algorithm [15] but also Chan’s op-
timal, output-sensitive algorithm [9] was shown be im-
plementable as an in-place algorithm, Brönnimann et
al. [8] conjectured Chan’s algorithm to be the “more
ultimate” planar convex hull algorithm. The second
relevant result was proved by Bose et al. [6]; we devel-
oped a framework for simulating a balanced divide-and-
conquer scheme using only O(1) working space. In par-
ticular, we showed how such a recursive scheme can be
implemented using a constant-sized (in terms of words)
stack and, among other results, developed linear-time,
in-place algorithms for selecting, un-selecting, and k-
selection in sorted arrays.

The optimal, output-sensitive algorithms by Kirk-
patrick and Seidel [16] and by Chan, Snoeyink, and
Yap [11] recently have been shown by Afshani et al. [1]
to be instance-optimal in the sense that the average run-
ning time (over all possible permutations of the input)
of the algorithm does not differ by more than a constant
factor from the minimum of the average running times
(again, over all possible permutations of the input) over
all algorithms that solve this problem. Afshani et al.
pointed out that such an instance-optimal algorithm is
“immediately also competitive against randomized (Las
Vegas) algorithms” [1, p. 130]. In this note, we prove:

Theorem 1 The deterministic, time-optimal, output-
sensitive, and instance-optimal planar convex hull algo-
rithm by Kirkpatrick and Seidel can be realized as an
in-place algorithm, i.e., using O(1) working space.

Since Chan’s algorithm is known to be time-optimal,
output-sensitive, and implementable as an in-place algo-
rithm but not known to be instance-optimal, the above
theorem improves the state-of-the-art of characterizing
the “ultimate planar convex hull algorithm” in favor of
Kirkpatrick and Seidel’s algorithm.



24th Canadian Conference on Computational Geometry, 2012

2 The Algorithm by Kirkpatrick and Seidel

The convex hull algorithm by Kirkpatrick and Sei-
del [16] uses a divide-and-conquer approach where, just
like in the quicksort algorithm, the bulk of the work is
done prior to recursion. To compute the upper hull of
a given point set, the algorithm first finds a “bridge”,
i.e., a hull edge crossing the median x-coordinate of the
point set, removes all points in the slab spanned by the
endpoints of the bridge, and recurses on the remaining
non-trivial point sets. The lower hull is computed analo-
gously. Assuming that the bridge can be found in linear
time, Kirkpatrick and Seidel upper-bound the running
time f(N,H) for computing the H-element convex hull
of an N -element point set as follows [16, p. 290]:

f(N,H) ≤
{

cn if H = 2

cn + max
H`+Hr=H

{
f
(
N
2 , H`

)
+ f

(
N
2 , Hr

)}
if H > 2

Here, H` and Hr denote the number of hull points left
and not to the left of the median x-coordinate. Solving
this equation yields an upper bound of O(N logH).

To determine the bridge (or, rather, its endpoints)
in linear time, the authors first determine the median
x-coordinate using a k-selection algorithm. They then
consider pairs of points and again use a k-selection algo-
rithm to find a pair of points inducing a line with median
slope. If this line cannot be shown to induce the bridge,
its slope is used to prune away a constant fraction of
the points, and the algorithm recurses on the remain-
ing points.1 Each invocation of this algorithm runs in
linear time as long as both k-selection and the pruning
procedure can be executed in linear time.

Special care must be taken to handle pairs of points
inducing lines with infinite slope (in this case, the pair is
excluded from the k-selection algorithm, and the lower
point is pruned immediately). Also, to ensure instance-
optimality, Afshani et al. [1] require that all points
strictly below the line through the leftmost and right-
most point of the point set need to be pruned prior to
determining the median x-coordinate.

3 Space-Efficient Building Blocks

As we will see, there are three building blocks that need
to be made in-place: selecting a subset of the input,
finding the k-th element according to some order, and
running a divide-and-conquer algorithm. Previously, we
gave linear-time algorithms for the first two tasks [6].
For the sake of self-containedness, we present the pseu-
docode for the selection task:

1There is a simplified version of this algorithm using random-
ized 2D linear programming [8, 18]. It is unclear, however, if
instance-optimality can be shown for the resulting convex hull al-
gorithm and, more important, whether such a characterization is
meaningful for a randomized algorithm.

Algorithm 1 SubsetSelection(A, b, e, f): selecting a
subset from an array A[b, . . . , e−1] using a (0, 1)-valued
function f that can be evaluated in constant time [6]. If
A is sorted, there is a linear-time inverse oblivious of f .

Ensure: A[b, . . . , i − 1] contains all elements of
A[b, . . . , e− 1] for which f evaluates to one.

1: i← b, j ← b and m← b + 1.
2: while i < e and j < e do
3: while i < e and f(A[i]) = 1 do
4: i← i + 1. . Move i such that f(A[i]) = 0.

5: j ← max{i + 1, j + 1};
6: while j < e and f(A[j]) = 0 do
7: j ← j + 1. . Move j such that f(A[j]) = 1.

8: if j < e then
9: swap A[i]↔ A[j].

10: Return i.

Also, we discussed how to use a bit stack of O(log n)
bits, i.e., O(1) words, to implement the following tem-
plate for the case of an almost perfectly balanced divide-
and-conquer, i.e., for the case that the size of the “left”
part of the recursion always is a power of two.

Algorithm 2 Recursive(A, b, e): Standard template
for recursive divide-and-conquer algorithms [6].

1: if e− b ≤ 2h0 (=size of the recursion base) then
2: BaseCode(A, b, e) . Solve small instances
3: else
4: PreCode(A, b, e)

. Setup Subproblem 1 in A[b, . . . , be/2c − 1]
5: Recursive(A, b, be/2c) . First recursive call
6: MidCode(A, b, e)

. Setup Subproblem 2 in A[be/2c, . . . , e− 1]
7: Recursive(A, be/2c, e) . Second recursive call
8: PostCode(A, b, e)

. Merge Subproblems 1 and 2 in A[b, . . . , e− 1]

While, in most situations, requiring an almost
perfectly balanced partition is not a constraint for
divide-and-conquer algorithms, such a partition cannot
be guaranteed for Kirkpatrick and Seidel’s algorithm
which, due to several pruning steps, does not balance
the sizes of the subproblems effectively handled in the
recursive calls. Thus, the central algorithmic problem
we need to address is how to recover the original values
of b and e after returning from a call to Recursive,
i.e., prior to calling MidCode and PostCode, using
globally no more than O(1) working space.

4 An Implementation With O(1) Working Space

In this section, we show how to implement the algorithm
by Kirkpatrick and Seidel using O(1) working space. To



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

pmin = pmin,`

pmax,`

pmax = pmax,r

pmin,r

x = a.x

bridge

Figure 1: Extremal hull points.

facilitate the exposition, we first describe how to adapt
the general divide-and-conquer template (Algorithm 2)
to deal with unbalanced recursive calls (Section 4.1).
We then show how to represent and combine the output
of the recursive calls (Section 4.2). Finally, we present
a linear-time, in-place algorithm for finding the bridge
needed for the divide-step (Section 4.3).

4.1 Adapting the Divide-and-Conquer Template

Using the terminology of the preceding section, the al-
gorithm by Kirkpatrick and Seidel will be run on an
array A[0, . . . , n − 1] where in each recursive step, i.e.,
for parameters b and e, we first invoke PreCode to do
the following (see Figure 1):

1. Identify the extremal hull points pmin and pmax.
2. Prune away all points strictly below pminpmax, i.e.,

in the light gray area in Figure 1 (this guarantees
instance-optimality [1, Section 3.1]).

3. Determine the point a with median x-coordinate
among the remaining points.

4. Compute the bridge, i.e., the segment induced by
the maximal2 hull point pmax,` to the left of a and
the minimal hull point pmin not to the left of a.

5. Prune away all points below the bridge, i.e., in the
dark gray area in Figure 1.

6. Adjust the indices b and e such that A[b, . . . , e− 1]
contains all unpruned points not to right of pmax,`.

After returning from the recursive call processing the
unpruned points, we need to call MidCode with the
original values of b and e, i.e., with the same values
that PreCode had been called with. Similarly, after
returning from the second recursive call, these original
values need to be passed to PostCode. Unlike in the
standard divide-and-conquer template (Algorithm 2) we
cannot simply assume that number of points passed to a
recursive call is exactly half the number of points origi-
nally passed to the invoking method; in fact, the central
point that allows for proving the optimal O(N logH)
time complexity is that this not the case.

It turns out, however, that three simple invariants
allow for reconstructing these values in time O(e− b):
Invariant (A): Prior to executing and after having ex-

ecuted Recursive(A, b, e), the two vertices of
the upper hull that have extremal coordinates in
A[b, . . . , e− 1] are stored in A[b] and A[b + 1].

2As usual, points lying on a hull edge, i.e., points in degenerate
position, are not considered to be hull points.

Invariant (B): The points passed to Recursive(A,
b, e) are exactly the points in A[0, . . . , n − 1] that
lie between A[b] and A[b + 1] as characterized in
Invariant (A).

Invariant (C): After having executed Recursive(A,
b, e), the values of b and e have been restored.

Using one linear scan and two swap operations, In-
variant (A) can be trivially established prior to invok-
ing Recursive(A, 0, n). Since the points with extremal
coordinates in A[0, . . . , n− 1] are also the extremal hull
vertices, Invariant (B) holds as well. It is also easy to
realize that all invariants can be guaranteed to be main-
tained using O(1) time and working space for constant-
sized recursion base cases.

Lemma 2 If Invariant (A) holds prior to invoking
PreCode, this method can be implemented as a linear-
time method with O(1) working space such that Invari-
ant (A) also holds prior to invoking Recursive for the
“left” recursion.

Proof. We consider each step of PreCode (as de-
scribed above) in turn. Since Invariant (A) holds
prior to invoking PreCode, Step 1 (identification
of pmin and pmax) trivially is a constant-time oper-
ation. Step 2 (pruning) can be implemented using
SubsetSelection(A, b, e, f) where f(p) = 0 holds iff p
is strictly below A[b]A[b + 1]. Since this algorithm
moves the pruned elements to A[e′, . . . , e − 1], the re-
sulting subarray looks as follows.

pmin pmax unpruned pruned
b e′ e

Using O(1) working space (among other things, to keep
track of the location of pmin and pmax to eventually
restore them to A[b] and A[b + 1]), we run a linear-
time, in-place k-selection algorithm [6, 17] to find the
point a with median x-coordinate in A[b, . . . , e′ − 1].
We then run an in-place version of the bridge-finding
algorithm (see Section 4.3) to determine the two hull
vertices pmax,` and pmin,r defining the bridge.

To prepare for the next recursive call, we move pmax,`

to A[b+ 2] and swap the two points in A[b], i.e., pmin =
pmin,`, and A[b + 1], i.e., pmax. We then increment b
by one and run SubsetSelection(A, b, e′, f) where
f(p) = 1 holds iff either p.x < pmax,`.x or p = pmax,` to
prune all points not to the right of pmax,`.

pmax pmin,` pmax,` unpruned pruned
b e′′ e′

Finally, we set e := e′′ (the index returned by Subset-
Selection) and are ready to recurse on A[b, . . . , e−1].
Since, by construction, Invariants (A) and (B) hold for
this call and since all steps take linear time and require
O(1) working space, the lemma follows. �



24th Canadian Conference on Computational Geometry, 2012

Storing pmax = pmax,r in front of the subarray passed
to the first recursive call allows us to easily recover the
indices b and e needed for invoking MidCode; in a slight
abuse of notation, this method is invoked with the in-
dices b and e passed to Recursive (these indices are
available by Invariant (C)) and does the following:

1. Recover the value of e passed to PreCode.
2. Recover the right endpoint pmin,r of the bridge.
3. Select all points in A[b, . . . , e − 1] that lie between

pmin,r and pmax,r.
4. Establish Invariant (A).

Lemma 3 If Invariants (A) and (C) hold prior to in-
voking MidCode and if Invariant (B) held prior to the
preceding call to Recursive, MidCode method can be
implemented as a linear-time method with O(1) working
space such that Invariants (A), (B), and (C) hold prior
to invoking Recursive for the “right” recursion.

Proof. To recover the (original) value of e that was
passed to PreCode, we scan forward from A[e], i.e.,
the first item not passed to the preceding recursive call.
By Invariant (C), we know that the index of the first
element in A[e, . . . , n − 1] with an x-coordinate larger
than A[b− 1] = pmax (or n if no such element exists) is
the value of e we are looking for. This scan takes linear
time and uses O(1) working space. We then decrement
b by one to include the element pmax = pmax,r.

To recover the right endpoint pmin,r of the bridge, we
exploit the fact that the bridge lies on the unique line
passing through pmax,` and a point to the right of pmax,`

such that no point in A[b, . . . , e−1] lies above this line.3

A simple proof by contradiction shows that this other
bridge point indeed lies to the right of the point a used
for originally splitting the point set.

Now that pmin,r and pmax,r have been recovered, we
use the same techniques as in PreCode to save the
point pmin, to select the points to be passed to the re-
cursive call, to move pmin,r and pmax,r to the front of the
subarray, and to adjust the index b accordingly. The re-
sulting array then looks as follows:

pmin pmin,r pmax,r unpruned pruned
b e′′ e′

Finally, we set e := e′′ (the index returned by Subset-
Selection) and are ready to recurse on A[b, . . . , e−1].
Since, by construction, Invariants (A) and (B) hold for
this call and since all steps take linear time and require
O(1) working space, the lemma follows. �

After the second call to Recursive, the call to Post-
Code is used to establish Invariants (A) and (C) for the

3This line may not be determined by a unique point, namely
if more than three points are allowed to be collinear. In this case,
the rightmost of these points is the recovered bridge point since
this choice minimizes the number of points passed to the next
recursive call (see also Footnote 2 and Section 4.3).

invoking call to Recursive. In the light of this, Post-
Code needs to perform the following steps:

1. Recover the value of e passed to MidCode.
2. Recover the left endpoint pmax,` of the bridge.
3. Establish Invariant (A).

Lemma 4 If Invariants (A) and (C) hold prior invok-
ing PostCode and if Invariant (B) held prior to the
preceding call to Recursive, PostCode method can be
implemented as a linear-time method with O(1) working
space such that Invariants (A) and (C) hold.

Proof. We proceed as in the proof of Lemma 3, i.e., we
first recover the value of e that was passed to MidCode
by checking boundary conditions w.r.t. pmin = A[b− 1],
adjusting b, and recovering the left bridge point. Since
the value of b remained the same over the invocations
of all relevant methods and since the value of e was re-
covered after each such invocation, Invariant (C) is es-
tablished. Using a linear scan and two swap operations,
Invariant (A) can be established as well. All algorithms
run in linear time and use O(1) working space. �

4.2 Representing the Output

The description of the algorithm so far only focused on
ensuring that the “boundaries” of the recursive calls can
be recovered efficiently. In this subsection, we discuss
how to represent the output from a call to Recursive.
For this, we establish a fourth invariant:
Invariant (D): After a call to Recursive(A, b, e), the

upper convex hull vertices (if any) between A[b] and
A[b + 1] (see Invariants (A) and (B)) are stored in
increasing x-order starting at A[b + 2].

Obviously, this invariant can be established trivially for
constant-sized recursion base cases.

Lemma 5 If Invariants (A) and (D) hold after a call
to Recursive(A, b, e), and if Invariant (B) held prior
to the preceding call to Recursive, the upper convex
hull computed during this recursive call can be recovered
based upon the knowledge of b only.

Proof. This proof exploits the fact that vertices on
the upper convex hull form right turns when traversed
in increasing x-order. The recovery algorithm first
checks whether A[b+ 2]4 lies strictly above the segment
A[b]A[b + 1]. If this is not the case, the upper convex
hull consists of A[b] and A[b+ 1] only, and we are done.
Otherwise, the algorithm scans forward from i = b + 3
until A[i] lies right of A[b+1] (in this case i = e, and we
are done), A[i] does not lie right of A[i− 1], or A[i− 1],
A[i], and A[b + 1] do not form a right turn (in the last
two cases, A[i− 1] is the last hull vertex). �

4For the sake of simplicity, we assume that the size of the
recursion base case is larger than two.



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Lemma 5 implies that the upper convex hull can be
reconstructed in linear time and O(1) working space af-
ter having returned from Recursive(A, 0, n): Scan
forward from A[0] to recover the index H, i.e., the num-
ber of points on the upper hull, and stably exchange
A[1](= pmax) and A[2, . . . ,H − 1].

We now show how to maintain Invariant (D) through-
out the algorithm. Inductively assume that, after the
“left” call to Recursive, we have computed the hull
points (denoted by “_`”) between pmin,` and pmax,`.
Also, by Invariant (C), we have restored b and e to its
original values. Then, the subarray looks as follows:

pmax pmin,` pmax,` _` . . .
b c e

By Lemma 5, we know that we can identify the in-
dex c such that A[b+3, . . . , c−1] stores the “_`”-points.
Using the (folklore) linear-time, in-place algorithm for
swapping two adjacent blocks, we then move this sub-
array to the end of A[b, . . . , e− 1].

pmax pmin,` pmax,` . . . _`

b e′ e

We then continue as in the proof of Lemma 3. Simi-
larly, after the “right” call to Recursive, the subarray
looks as follows (b and e are available by Invariant (C),
c and e′ are recovered as implied by Lemma 5):

pmin pmin,r pmax,r _r . . . _`

b c e′ e

Using linear-time, in-place swapping, we rearrange
the contents of the subarray such that Invariants (A)
and (D) hold, and proceed as in the proof of Lemma 4.

pmin,` pmax,r _` pmax,` pmin,r _r . . .
b e

Since Invariant (D) can be established for constant-
sized recursion base cases in a straightforward way, the
above discussion implies that we can maintain Invari-
ant (D) during each execution of Recursive with linear
time and O(1) working space as claimed.

4.3 Finding a Bridge

In the proof of Lemma 2, we assumed that there is a
linear-time, in-place algorithm for finding the two end-
points pmax,` and pmin,r of the upper hull edge crossing
the vertical line x = a.x. While we could simply refer to
the in-place implementation proposed by Brönnimann
et al. [8, Theorem 5], we give the details for the sake
of self-containedness and to show that this computation
does not interfere with maintaining the invariants.

By the discussion in the preceding subsections, we
know that in this situation the subarray looks as follows:

pmin pmax unpruned pruned
b e′′ := e′ e

Following Kirkpatrick and Seidel, we form pairs of
points and order them by increasing x-coordinate. If
the number of points is odd, we use O(1) space to store
the remaining point p̃. Using SubsetSelection we
then move all pairs where the two points have the same
x-coordinate (“↑”) to the end of the array.

pmin pmax ↗ . . . ↗ ↑ . . . ↑
b e′′′ e′′

From now on, we use O(1) space to keep track of
the position of the points pmax and pmin such that they
can be restored to A[b, b+ 1] (hence establishing Invari-
ant (A)) after the bridge has been found.

To find the bridge, we run a linear-time, in-place
k-selection algorithm [6, 17] to determine the pair of
points in A[b, . . . , e′′′−1] inducing the line with median
slope K. Based upon this slope, we twice run Subset-
Selection to partition A[b, . . . , e′′′ − 1] into three sets
of pairs: Small (slope less than K), Equal (slope K),
and Large (slope larger than K).

Small Equal Large ↑ . . . ↑
b c c′ e′′′ e′′

Just as in the original algorithm, the two endpoints
of the edge with slope K are found by scanning over
A[b, . . . , e′′′ − 1] to find, among all points p maximizing
p.y −K · p.x, the points with minimum and maximum
x-coordinate. This step is easily seen to both take linear
time and use O(1) working space.

If the edge constructed this way crosses the vertical
line x = a.x, we have found the hull vertices pmax,` and
pmin,r. We record these vertices using O(1) space and
then spend linear time to move pmax and pmin back to
A[b, b + 1]. Finally, we discard the indices c, c′, e′′, and
e′′′, keep the indices e and e′, and resume the algorithm
described in the proof of Lemma 2.

If, however, both endpoints of the edge lie to the right
of the vertical line x = a.x, we need to recurse on all
points in Large and the left points of all pairs in Small
and Equal plus the upper points of all pairs with the
same x-coordinate (the case that no endpoint lies to the
right of the vertical line is handled symmetrically). To
prepare for this (tail) recursion, we first swap Large to
the beginning of A[b, . . . , e′′ − 1] and then use Subset-
Selection to select the appropriate point from each
remaining pair. If the number of points we started with
was odd, we also add the point p̃ to the points to be pro-
cessed next. To prepare for the next iteration, we again
group pairs of points as described above and update the
indices e′′′ and e′′ accordingly.

↗ . . . ↗ ↑ . . . ↑ . . .
b e′′′ e′′



24th Canadian Conference on Computational Geometry, 2012

The correctness of this algorithm and its linear run-
time follow from the original proofs presented by Kirk-
patrick and Seidel. With respect to the space require-
ment, we observe that, in addition to the constant num-
ber of indices used in k-selection algorithms and the calls
to SubsetSelection, the iterative algorithm outlined
above requires only to maintain a constant number of
“global” indices: the original indices b and e, two in-
dices to keep track of pmax and pmin, and the index e′

denoting the end of the current working set. The other
indices, i.e., e′′, e′′′, c, c′, and possibly the index to keep
track of the “excess” element p̃ are indices local to each
iteration and can be discarded at the end of this itera-
tion. In summary, the above discussion implies that we
can indeed find a bridge in linear time and using O(1)
working space while maintaining the invariants.

Putting everything together, this establishes a proof
of Theorem 1, i.e., we have shown that we can realize
the deterministic, time-optimal, output-sensitive, and
instance-optimal planar convex hull algorithm by Kirk-
patrick and Seidel using O(1) working space. Thus, we
have established one more optimality criterion to hold
for the “ultimate planar convex hull algorithm”.

Note added in proof An alternative in-place algo-
rithm has been suggested by Raimund Seidel [personal
communication]: Viewed holistically, the “marriage-
before-conquest-algorithm” maintains an ordered se-
quence of upper-hull edges and gaps and proceeds al-
ways by finding a bridge in the leftmost gap until no
gap is left. The suggested alternative approach realizes
this using an iterative, non-recursive algorithm which
requires each points to be labeled either “extreme”,
“dead”, or “alive”. Assuming that the input does not
contain duplicates, these labels can be stored implicitly
by locally rearranging the input points: consider blocks
of consecutive 7 points in the input array; there is a
canonical lexicographic order of those points; storing
the points in any one of the 7! permutations allows to
encode any one of the 37 labellings of those points, since
7! > 37. We leave the details to the reader.

References

[1] P. Afshani, J. Barbay, and T. M.-Y. Chan. Instance-
optimal geometric algorithms. In Proc. IEEE Symp.
Foundations of Computer Science, pp. 129–138. 2009.

[2] T. Asano and B. Doerr. Memory-constrained algo-
rithms for shortest path problems. In Proc. Canadian
Conf. Computational Geometry, pp. 315–318, 2011.

[3] T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-
work-space algorithms for geometric problems. Journal
of Computational Geometry, 2(1):46–68, 2011.

[4] H. Blunck and J. Vahrenhold. In-place randomized
slope selection. In Proc. Intl. Conf. on Algorithms and
Complexity, LNCS 3998, pp. 31–40, 2006.

[5] H. Blunck and J. Vahrenhold. In-place algorithms for
computing (layers of) maxima. Algorithmica, 57(1):1–
21, May 2010.

[6] P. Bose, A. Maheshwari, P. Morin, J. Morrison,
M. Smid, and J. Vahrenhold. Space-efficient geometric
divide-and-conquer algorithms. Computational Geome-
try: Theory & Applications, 37(3):209–227, Aug. 2007.

[7] H. Brönnimann, T. M.-Y. Chan, and E. Y. Chen. To-
wards in-place geometric algorithms. In Proc. Symp.
Computational Geometry, pp. 239–246. 2004.

[8] H. Brönnimann, J. Iacono, J. Katajainen, P. Morin,
J. Morrison, and G. T. Toussaint. Space-efficient planar
convex hull algorithms. Theoretical Computer Science,
321(1):25–40, June 2004.

[9] T. M.-Y. Chan. Optimal output-sensitive convex hull
algorithms in two and three dimensions. Computational
Geometry: Theory and Applications, 16(14):361–368,
Apr. 1996.

[10] T. M.-Y. Chan and E. Y. Chen. Optimal in-place and
cache-oblivious algorithms for 3-d convex hulls and 2-d
segment intersection. Computational Geometry: The-
ory and Applications, 43(8):636–646, Oct. 2010.

[11] T. M.-Y. Chan, J. S. Snoeyink, and C.-K. Yap.
Primal dividing and dual pruning: Output-sensitive
construction of four-dimensional polytopes and three-
dimensional Voronoi diagrams. Discrete & Computa-
tional Geometry, 18(4):433–454, Dec. 1997.

[12] J.-C. Chen. Optimizing stable in-place merging. Theo-
retical Computer Science, 302(1–3):191–210, June 2003.

[13] M. De, A. Maheshwari, S. Nandy, and M. Smid. An
in-place priority search tree. In Proc. Canadian Conf.
Computational Geometry, pp. 331–336, 2011.

[14] M. De and S. Nandy. Space-efficient algorithms for
empty space recognition among a point set in 2D and
3D. In Proc. Canadian Conf. Computational Geometry,
pp. 347–353, 2011.

[15] R. L. Graham. An efficient algorithm for determining
the convex hull of a finite planar set. Information Pro-
cessing Letters, 1(4):132–133, June 1972.

[16] D. G. Kirkpatrick and R. Seidel. The ultimate planar
convex hull algorithm? SIAM Journal on Computing,
15(1):287–299, Feb. 1986.

[17] T. W. Lai and D. Wood. Implicit selection. In Proc.
Scand. Workshop on Algorithm Theory, LNCS 318, pp.
14–23, 1988.

[18] R. Seidel. Small-dimensional linear programming and
convex hulls made easy. Discrete & Computational Ge-
ometry, 6(4):423–434, Dec. 1991.

[19] J. Vahrenhold. An in-place algorithm for Klee’s mea-
sure problem in two dimensions. Information Processing
Letters, 102:169–174, May 2007.

[20] J. Vahrenhold. Line-segment intersection made in-
place. Computational Geometry: Theory & Applica-
tions, 38(3):213–230, Oct. 2007.

[21] J. W. J. Williams. Algorithm 232: Heapsort. Commu-
nications of the ACM, 7(6):347–348, June 1964.


