
Optimization Plugin for
RapidMiner

Te
ch

ni
ca

lR
ep

or
t Venkatesh Umaashankar

Sangkyun Lee

04/2012

technische universität

dortmund

Part of the work on this technical report has been supported by Deutsche Forschungs-
gemeinschaft (DFG) within the Collaborative Research Center SFB 876 "Providing
Information by Resource-Constrained Analysis", project C1.

Speaker: Prof. Dr. Katharina Morik
Address: TU Dortmund University

Joseph-von-Fraunhofer-Str. 23
D-44227 Dortmund

Web: http://sfb876.tu-dortmund.de

http://sfb876.tu-dortmund.de

Abstract

Optimization in general means selecting a best choice out of various alternatives, which
reduces the cost or disadvantage of an objective. Optimization problems are very popular
in the fields such as economics, finance, logistics, etc. Optimization is a science of its
own and machine learning or data mining is a diverse growing field which applies tech-
niques from various other areas to find useful insights from data. Many of the machine
learning problems can be modelled and solved as optimization problems, which means
optimization already provides a set of well established methods and algorithms to solve
machine learning problems. Due to the importance of optimization in machine learning,
in recent times, machine learning researchers are contributing remarkable improvements
in the field of optimization. We implement several popular optimization strategies and
algorithms as a plugin for RapidMiner, which adds an optimization tool kit to the list of
existing arsenal of operators in RapidMiner.

1

Contents

1 Introduction 4

1.1 Mathematical formulation . 4

1.1.1 Notations from machine learning perspective 4

1.2 Smooth and non-smooth problems . 5

1.3 Iterative optimization algorithms . 5

1.4 Optimization based learning for RapidMiner 5

1.5 Download . 5

2 Smooth optimization 6

2.1 Line search . 6

2.2 Search direction . 6

2.2.1 Gradient descent . 6

2.2.2 Newton method . 7

2.3 Smooth loss functions . 7

2.3.1 Least squares . 7

Gradient for least squares . 7

Hessian for least squares . 7

2.3.2 Logistic loss . 8

Gradient for logistic loss . 8

Hessian for logistic loss . 8

2.4 Smooth regularizers . 8

2.4.1 `2 regularizer . 8

Gradient of `2 regularization term 8

Hessian of `2 regularization term 9

2.4.2 Group `1 regularizer . 9

Gradient of group `1 regularization term 9

2.5 Line search algorithms . 9

2.5.1 Backtracking Armijo . 9

2.5.2 Wolfe’s line search . 10

3 Non-smooth optimization 10

3.1 Non-smooth Algorithms . 10

2

3.2 Subgradient descent . 10

3.2.1 Non-smooth loss functions . 10

3.2.2 Hinge loss . 11

Subgradient for hinge loss . 11

3.2.3 Nonsmooth regularizers . 11

3.2.4 `1 regularizer . 11

subgradient of `1 regularization term 11

3.2.5 Elasticnet regularizer . 11

subgradient of elasticnet regularization term 12

3.3 Stochastic gradient descent . 12

3.4 `1 regularized dual averaging . 12

4 OptimLearner Operator and Configuration 14

5 Experiments 15

5.1 Datasets . 15

5.2 First vs second order method . 15

Experiment setup . 15

5.3 Smooth vs non-smooth methods to nonsmooth problem 17

Experiment setup . 17

5.4 Batch vs online method . 18

Experiment setup . 18

5.5 Non-regularized vs regularized . 20

Experiment setup . 20

5.6 Optim-plugin vs Rapidminer vs Weka . 22

Experiment setup . 22

6 Conclusion 23

3

1 Introduction

In mathematics, optimization, usually refers to maximizing or minimizing a function
f(x)’s value by choosing input values from a valid set and finding the input value which
results in the maximum or minimum value of the function. x could be either vector or
a scalar. When x is scalar, it is an one dimensional optimization problem and in case of
vector it becomes a multi dimensional optimization problem. From the perspective of ma-
chine learning, many learning problems can be solved as multidimensional unconstrained
minimization problems.

1.1 Mathematical formulation

We will describe what a minimization problem is and also set the notations that will be
used throughout this report. An optimization problem could be either constrained or un-
constrained. Constrained optimization problems are the problems that have constraints
(equality and non equality constraints) on the variables and unconstrained minimization
problems are those that do not have any constraints. In this plugin we mainly focus only
on unconstrained optimization problems and we implement some of the algorithms to
solve them.

An unconstrained optimization problem can be expressed as

θ∗, argmin
θ∈Rp

J(θ,X)

the aim is to find the value of θ∗ which minimizes the value of the objective function
J(θ,X).

1.1.1 Notations from machine learning perspective

• X a matrix containing the training data of size n × p, where n is the number of
rows or observations and p is the number of attributes in each observation. Each
row in X is a vector x(i) ∈ Rp, a row vector of size 1 × p, for i = 1..n. Note: an
addition column with value 1 is added as first column in the data matrix to handle
the intercept term in the optimization problem.

• y, a column vector of size n × 1, which contains the labels for each observation
x(i) ∈ X and y(i) ∈ R for i = 1..n

• θ ∈ Rp, the optimization variable or weights of the learning problem, is a column
vector of size p× 1

• J(θ,X), the cost or the loss function or the objective function to be minimized

4

1.2 Smooth and non-smooth problems

An optimization problem can be classified in to two categories mentioned below.

Smooth: The cost function is continuous, differentiable and has a second derivate, the
problem is called a smooth optimization problem. eg. linear least squares problem.

Non Smooth: The cost function is not differentiable. e.g. hinge loss.

In this plugin we implement algorithms that support both smooth and non smooth prob-
lems. The algorithms supported are explained in the coming chapters in detail.

1.3 Iterative optimization algorithms

The optimization algorithms implemented in the plugin are iterative in nature. The
learning process starts with either a random value or a zero vector for the learning
variables and during every iteration, the value of the learning variables are modified, such
that the new value reduces the value of the objective function. The learning variables
in each iteration are also called as iterates. The iterations are repeated until any of the
following conditions are satisfied.

1. specified maximum number of iterations exceeded.

2. convergence is achieved.

3. no more improvements can be made.

In the following sections, we describe the algorithms specific to the section [1.2] that are
implemented in the plugin.

1.4 Optimization based learning for RapidMiner

The optimization plugin for RapidMiner aims at introducing mathematical optimization
based learning capability to RapidMiner. An unconstrained optimization problem, which
is called learning (or) training in machine learning can be solved with different algorithms.
Each algorithm has a set of configurable items, say, function to be optimized, choice of
search direction, regularization type, choice of learning rate (line search) etc. There are
different options available to perform the task pertaining to each configuration. This
plugin aims at giving a clean separation of these configurable items, so that the user
can configure these items before starting the learning. Thus, giving the user, an easily
configurable optimization based learner.

1.5 Download

The optimization plugin for RapidMiner is available for download from the link
https://bitbucket.org/venkatesh20/optimization-extension

5

https://bitbucket.org/venkatesh20/optimization-extension

2 Smooth optimization

In this chapter, we describe the algorithms that are implemented in the Optimization plu-
gin that support smooth optimization. The algorithms for smooth optimization exactly
follow the steps explained in the section 1.3 in the previous chapter. Smooth optimiza-
tion algorithms generally use grandient and hessian information of the objective function
to calculate the next iterate.There are two strategies available for calculating the next
iterate

Line search: A search direction pk is identified and we move along the search direction
hoping to minimize the cost. We discuss the choices for search direction later in
this chapter.

Trust region: A local simple model of the objective model is build and the local model
is minimized in the region where it can be trusted.

We implement only Line search based algorithms in the plugin and trust region based
algorithms are currently not implemented in the plugin, due to their sophisticated nature.
Trust region based methods may be supported by the plugin, in the future.

2.1 Line search

In case of line search, the update rule for the next iterate is given by

θk+1 = θk + αpk (1)

where

• pk ∈ Rp, a column vector which gives the search direction

• α ∈ R, learning rate or step size of the line search.

2.2 Search direction

The plugin supports the two choices listed below for selecting the search direction.

2.2.1 Gradient descent

In case of gradient descent or steepest gradient, the negative of the gradient is chosen as
the search direction.

pk = −OJ(θ,X) (2)

Gradient descent has a linear rate of convergence and could be quite slow in some cases.

6

2.2.2 Newton method

In case of Newton’s method, the search direction is given by

pk = −(O2J(θ,X))−1OJ(θ,X) (3)

where −(O2J(θ,X))−1 is the inverse of the hessian matrix (second order derivatives) of
the function J(θ,X).

To use the plain Newton’s method, the hessian matrix should be positive definite. New-
ton’s method has a quadratic rate of convergence if the learning is started with a good
approximation of the learning variables which is near the minimum, otherwise it may
fail to converge even. There are modified versions of Newton’s method which make some
modifications to the hessian matrix to make it positive definite and also to make it work
for any starting point.

2.3 Smooth loss functions

This section describes the loss fuctions that are implemented in the plugin, which are
available for the user to configure a smooth optimization problem. The same notations
presented in the section 1.1.1 are used to describe the loss functions.

2.3.1 Least squares

The cost function for the least squares problem is given by

J(θ,X) = 1/2n
n∑
i=1

(h(θ, x(i))− y(i))2 (4)

where h(θ, x(i)) is the hypothesis function that is used to predict the label and is given
by the below equation.

h(θ, x(i)) = x(i)θ (5)

Gradient for least squares The gradient for the least squares problem is given by

OJ(θ,X) =
1

n

n∑
i=1

(h(θ, x(i))− y(i))x(i) (6)

Hessian for least squares The hessian for the least squares problem is given by

O2J(θ,X) = XTX (7)

7

2.3.2 Logistic loss

The cost function for the logisitic loss or logistic regression problem is given by

J(θ,X) =
1

n

n∑
i=1

−log

{
1

1 + e(−y(i)x(i)θ)

}
(8)

h(θ, x(i)) is the hypothesis function that is used to predict the label and is given by the
below equation.

h(θ, x(i)) =

{
+1, if 1/(1 + e−x

(i)θ) ≥ threshold(usually 0.5)
−1 otherwise

(9)

Gradient for logistic loss The gradient for the logistic loss is given by

OθjJ(θ, x(i)) =
1

1 + e(y(i)x(i)θ)
(−y(i)x(i)j) where θj is jth compoment of the vector θ (10)

Hessian for logistic loss The hessian for the logistic loss is given by

OjOkJ(θ, x(i)) = x
(i)
j x

(i)
k

e(y
(i)x(i)θ)(

1 + e(y(i)x(i)θ)

)2 (11)

2.4 Smooth regularizers

In an optimization problem, regularization is normally done to reduce overfitting of the
model to the training data. The smooth optimization problem type supports only `2
regularization. The regularization term, ψ(θ) is usally added to the loss of the chosen
loss function.

2.4.1 `2 regularizer

The loss function of the `2 regularization is given by

ψ(θ) =
λ

2

p∑
i=2

θ2j (12)

Gradient of `2 regularization term

Oψ(θi) = θj (13)

8

Hessian of `2 regularization term

O2ψ(θi) = 1 (14)

The first term θ1 (intercept or bias term) is not usually included in the regularization. L2
regularization is smooth and can be easily solved when summed with other smooth loss
functions. L2 regularization keeps the values of the optimization variable θ small and it
also reduces the overfitting.

2.4.2 Group `1 regularizer

Group `1 is similar to `1 at group level. Depending upon the the value for λ, a group of
co-efficients could be dropped out of the model. If the group size is reduced to one, this
is same as `1 regularization. Sometimes, attributes can be grouped based on the domain
knowledge, in such cases group `1 could be very useful. The loss function of the group `1
regularization is given by

ψ(θ) = λ
K∑
k=1

‖θGk
‖ = λ

K∑
k=1

√√√√ Gk∑
j=1

(θGkj
)2 (15)

where K is the number of groups, θGk
is a subvector of θ, which is called as group Gk.

The elements with in the group are not allowed to overlap.

Gradient of group `1 regularization term

Oψ(θGkj
) =

{
λ
θGkj

‖θGk
‖ , if θGkj

6= 0

0 otherwise
(16)

The first term θ1 (intercept or bias term) is not usually included in the regularization.
Group `1 regularization is smooth . For more details, please refer to the paper [4]

2.5 Line search algorithms

2.5.1 Backtracking Armijo

Armijo’s condition is given by

J(θk + αpk, X) ≤ J(θk, X) + c1αOJ(θk, X)Tpk (17)

This means that the reduction in the loss, should be proportional to the learning rate
α and also to the directional derivate OJ(θk, X)pk. In backtracking Armijo line search,
we start with a maximum value of the learning rate α and keep reducing it by a factor
till we find a value of α, that satisfies the Armijo’s condition. This condition is also
called as sufficient decrease condition. For a detailed description of the algorithm refer
to algorithm 3.1 of Jorge Nocedal and Stephen J. Wright [1].

Armijo’s line search can work with any smooth loss function.

9

2.5.2 Wolfe’s line search

OJ(θk + αpk, X)Tpk ≥ c2OJ(θk, X)Tpk (18)

The above equation is known as curvature condition. The Armijo’s condition given in the
equation. 17, and the above condition, both together are referred to as Wolfe conditions.
In wolfe’s line search, the selected learning rate alpha should satisfy both the wolfe
conditions for constants c1 > 0 , c2 > 0 and 0 < c1 < c2 < 1. For a detailed description
of the Wolfe line search algorithm refer to algorithm 3.5 of Jorge Nocedal and Stephen
J. Wright [1].

Wolfe’s strong line search can work with any smooth loss function and has generally faster
convergence than that of back tracking Armijo.

3 Non-smooth optimization

3.1 Non-smooth Algorithms

In this section, we describe the algorithms for non smooth optimization that are imple-
mented in the plugin.

3.2 Subgradient descent

In case of non smooth optimization, when the objective function or loss function is not
differentiable, the derivative is replaced by its subgradient. g is a subgradient of a function
f at x if

f(y) ≥ f(x) + gT (y − x) ∀y ∈ Rn (19)

when a function is differentiable, the subgradient is equal to its gradient. Subdifferential
∂f(x) of f at x is the set of all subgradients. Subgradient descent is same as the gradient
descent or steepest descent algorithm, except for the fact that subgradient will be used
instead of gradient and also subgradient descent may even converge slower than that of
gradient descent. This is due to the reason that the direction provided by subgradient
may not be strictly descreasing.

3.2.1 Non-smooth loss functions

This section describes the loss fuctions that are implemented in the plugin, which are
available for the user to configure a non smooth optimization problem. The same nota-
tions presented in the section 1.1.1 are used to describe the loss functions.

10

3.2.2 Hinge loss

Hinge loss is a non differentiable, non smooth loss function. The cost function for the
hinge loss is given by

J(θ,X) =
1

m

n∑
i=1

max

{
0, 1− y(i)(θTx(i))

}
(20)

h(θ, x(i)) is the hypothesis function that is used to predict the label and is given by

h(θ, x(i)) =

{
+1, if x(i)θ > 0

−1 otherwise
(21)

Subgradient for hinge loss The subgradient, g ∈ ∂J(θ, x(i)) for the hinge loss is given
by

g =

{
−y(i)x(i), if 1− (y(i)x(i)θ) > 0

0, otherwise
(22)

3.2.3 Nonsmooth regularizers

3.2.4 `1 regularizer

The loss function of the `1 regularization is given by

ψ(θ) = λ

p∑
i=2

|θj| (23)

subgradient of `1 regularization term the subgradient b ∈ ∂ψ(θ) is given by

bj =


−1, if θj < 0

1, if θj > 0

0, otherwise
(24)

The first term θ1 (intercept or bias term) is not usually included in the regularization.
`1 regularization is non smooth .`1 regularization keeps the values of the optimization
variable θ sparse and it also reduces the overfitting.

3.2.5 Elasticnet regularizer

The loss function of the Elasticnet regularization is given by

ψ(θ) = (`1 + `2) =

(
λ

p∑
i=2

|θj|+
σ

2

p∑
i=2

θ2j

)
(25)

11

subgradient of elasticnet regularization term the subgradient b ∈ ∂ψ(θ) is given
by

bj = θj +


−1, if θj < 0

1, if θj > 0

0, otherwise
(26)

The first term θ1 (intercept or bias term) is not usually included in the regularization.
Elasticnet regularization is non smooth. Elasticnet regularization gives the combined
effect of `1 and `2 regularization.

3.3 Stochastic gradient descent

The update rule for SGD is same as that of gradient descent, except for the fact that in
SGD only one observation or example in the training data is processed per iteration, and
the learning variable is updated every iteration. So the loss that is minimized is only the
value of the loss function for current example. Hence it is a non smooth optimization
problem. SGD supports all the loss functions [2.3.1] least squares, [2.3.2] Log Loss, [3.2.2]
hinge loss and all the regularizers [3.2.5] L1, [2.4.1] L2, that we have seen so far.

3.4 `1 regularized dual averaging

The regularized dual averaging algorithm (RDA),based on the paper Lin Xiao [2] is
implemented in the plugin. This implementation supports loss functions [2.3.1] least
squares, [2.3.2] Log Loss, [3.2.2] hinge loss based on soft L1 regularization.

Each iteration of the RDA methods takes the form

θt+1 = argmin
θ

{
1

t

t∑
τ=1

〈gτ , θ〉+ Ψ(θ) +
βt
t
h(θ)

}
(27)

where h(θ) is a strongly convex function, {βt}t≥1 is a non negative, non decreasing input
sequence which determines the convergence property of the algorithm.

At each iteration, this method minimizes the sum of three terms: a linear function
obtained by averaging all previous subgradients (the dual average), the original regular-
ization function Ψ(θ) and an additional strongly convex regularization term βt

t
h(θ).

for t = 1, 2, 3.... do

1. Compute the subgradient gt of the cost function w.r.t θ ∂J(θ)
∂θ

2. Update the average subgradient

ḡt =
t− 1

t
ḡt−1 +

1

t
gt

3. Now we update the θ as follows for soft L1 regularization, here the regularization
function Ψ(θ) = λ‖w‖1 for some λ > 0 and the strongly convex function h(θ) =
1
2
‖w‖22

12

4. Loop through the elements of the average gradient vector ḡt, if |g|(i)t ≤ λ, then set

θ
(i)
t+1 = 0

else

θ
(i)
t+1 = −

√
t

γ

(
ḡ
(i)
t − λ sgn(ḡ

(i)
t)
)

We restrict `1 -regularization on part of the optimization variables only.The bias
term is free of regularization. In this case, we can simply replace λ by 0 for the
corresponding coordinates in the above update.

13

4 OptimLearner Operator and Configuration

The optimization plugin adds only one new operator called optimLearner. OptimLearner
is highly configurable and supports the configuration of all the problem types, line searches
and regularizers discussed earlier. A sample repository is made available along with
the plugin. This repository contains many sample processes which show case several
configurable options of the optimization plugin.

Figure 1: OptimLearner - Sample Process

Figure 2: OptimLearner - Sample Configuration

14

5 Experiments

5.1 Datasets

1. MNIST: The MNIST dataset is a database of handwritten digits. It has a training
set of 60,000 examples, and a test set of 10,000 examples. We used the scaled version
of mnist dataset available from libsvm datasets
(http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html). We ex-
tract the data pertaining to the numbers 6 and 8 to make the problem, a binominal
classfication. From the extracted data, we considered 80%(9415) as training exam-
ples and 20%(2354) testing examples.

2. Wine quality: The wine quality data set is available from UCI machine learning
repository (http://archive.ics.uci.edu/ml/datasets/Wine+Quality). We extracted
the data pertaining to red wine only.we considered 80%(1279) as training examples
and 20%(320) testing examples.

In the below experiments we train the model on the training set and validate the model
performance on the test set and report the same.

5.2 First vs second order method

Here we compare the first order method “Gradient descent” and second order “Newton
method”.

Experiment setup

• Dataset: Wine quality data set.

• Regression type: Least Squares , Linear Regression

• Fixed tolerance: tolerance was fixed at 1.0e-5 and both the methods were run
until the stopping criterian is less than tolerance.

Table 1: First Vs second order - Performance metrics

Method RMSE Absolute Error
Gradient Descent 0.71339168 +/ -0.00000000 0.55016313 +/- 0.45414559
Newton Method 0.65892359 +/- 0.00000000 0.50665033 +/- 0.42129056

15

http://yann.lecun.com/exdb/mnist/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html

Figure 3: First vs second order - Gradient descent

Figure 4: First vs second order - Newton method

We can observe from the plots that, when a point close to the minimum is reached,
Newton method converges faster from that point than Gradient Descent. Theoritically,
Newton method converges in quadratic rate near the solution.

16

5.3 Smooth vs non-smooth methods to nonsmooth problem

Here we compare the smooth method “Gradient descent” and nonsmooth method “Stochas-
tic gradient descent” using a nonsmooth loss function, hinge loss as the objective function.

Experiment setup

• Dataset: MNIST.

• Problem type: Hinge loss with `2 regularization with λ = 0.001

• Fixed time: Both methods were run for a fixed time of 20 seconds. The time for
objective computation is excluded for the both the methods.

• Gradient descent: fixed step size, α = 0.17

• SGD: fixed step size, γ = 2

Table 2: Smooth vs non-smooth methods - Performance metrics

Method Accuracy (%) F-Score (%) No. of iterations
Gradient Descent 78.12 79.26 113
SGD 98.85 98.87 225960

Figure 5: Smooth vs non-smooth - Gradient descent

We can observe from the plots that, in case of “Gradient Descent”, the objective func-
tion value decreases gradually in each iteration, whereas in case of “Stochastic Gradient

17

Figure 6: Smooth vs non-smooth - Stochastic gradient descent (only initial iterations)

Descent” the initial iterations make huge errors and the value of the objective function
decreases drastically in the initial iterations and almost remains the same afterwards.
And also it is very obvious that, in this case SGD converges faster than that of Gradient
descent.

5.4 Batch vs online method

Here we compare the batch method “Gradient descent” and online method “Stochastic
gradient descent” using Logistic loss as the objective function.

Experiment setup

• Dataset: MNIST.

• Regression type: Logistic regression with `2 regularization with λ = 0.001

• Fixed time: Both methods were run for a fixed time of 20 seconds. The time for
objective computation is excluded for SGD, where as in case of Gradient descent
objective value computation is a part of termination criterian.

• Gradient descent: Armijo line search, with αmin = 10−4 , alphamax = 1.0 and c1 =
10−4

• SGD: descreasing step size, γ = 2

18

Figure 7: Batch vs online - Gradient descent

Figure 8: Batch vs online - Stochastic gradient descent (only initial iterations)

19

Table 3: Batch vs online Method - Performance metrics

Method Accuracy (%) F-Score (%) No. of iterations
Gradient Descent 98.9 98.91 36
SGD 98.6 98.62 167460

We can observe from the plots that, the “Stochastic gradient descent” converged more
faster than “Gradient descent”. Usually, when the dataset has good representative samples
this happens and also, when the data set size is large, “Stochastic gradient descent” wins
over “Gradient descent” most of the times.

5.5 Non-regularized vs regularized

Here, we compare the Non regularized versions of SGD and RDA, with regularized ver-
sions SGD and RDA, using Logistic loss as the objective function.

Experiment setup

• Dataset: MNIST.

• Regression type: Logistic regression.

• Non regularized: No regularizers applied.

• Regularized: `1 regularization for values of λ = 0.0001, 0.001, 0.01, 0.1

• SGD: descreasing step size, γ = 2

• RDA: γ = 2

20

Figure 9: Non-regularized vs regularized - SGD

Figure 10: Non-regularized vs regularized - RDA

We can observe from the plots that, RDA produces higly sparse solutions than that of
SGD, without compromising much on the accuracy. This could be very useful in high
dimensional data space.

21

5.6 Optim-plugin vs Rapidminer vs Weka

Here, we compare the performance of operators from Optim-plugin, RapidMiner and
Weka using the metrics run duration (dur), accuracy, fscore and number of non zeros in
the coefficient vectors(non zeros).

Experiment setup

• Dataset: MNIST.

• Regression type: Logistic Regression.

• Optim-plugin:

optim-GD: Gradient Descent from optimization plugin with logistic loss, `1 reg-
ularization, λ = 0.01, wolfe line search, tolerance = 10−4.

optim-SGD: γ = 2, number of epochs = 1, decreasing step size, with logistic
loss, `1 regularization, λ = 0.01.

optim-RDA: γ = 2, number of epochs = 1, with logistic loss, `1 regularization,
λ = 0.01.

• Rapidminer:

RM-LR: Logistic Regression operator from RapidMiner, Kernel type = dot, C =
0.0010, Convergence epsilon = 10−4, Max iterations = 10.

• Weka:

Weka-LR: Logistic learner from weka, ridge = 0.01, Max iterations = -1.

Weka-SGD: SGD learner from weka, λ = 0.01, learning rate = 0.001.

Table 4: Optim-Plugin Vs Rapidminer Vs Weka - Performance metrics

Method Duration (sec) Accuracy (%) F-Score (%) Nonzeros
Optim-GD 62 97.88 97.91 620
optim-SGD 3 96.52 96.52 620
optim-RDA 3 98.09 98.12 419
RM-LR 200 97.88 97.87 620
Weka-LR 53 98.51 98.53 623
Weka - SGD 6 99.02 99.0 605

22

6 Conclusion

We presented a plugin to RapidMiner which provides algorithms to solve optimization
problems. The operator implementing these algorithms is configurable by the user. Also,
this plugin provides an effective configurable optimization based learner in RapidMiner.
Optimization plugin also emphasises the fact, that many machine learning problems are
in fact optimization problems. The advantage of various efficient optimization techniques
allows us to solve these machine learning problems efficiently as well.

References

[1] Jorge Nocedal and Stephen J. Wright: Numerical optimization, Springer, New York,
2006.

[2] Lin Xiao et al.. ‘Dual Averaging Methods for Regularized Stochastic Learning and
Online Optimization’, Journal of Machine Learning Research 11

[3] Hauser, Raphael. "Line Search Methods for Unconstrained Optimisation ." Lecture
8. 2007.

[4] Jerome Friedman, Trevor Hastie and Robert Tibshirani. "A note on the group lasso
and a sparse group lasso" Feb. 2010.

23

	Introduction
	Mathematical formulation
	Notations from machine learning perspective

	Smooth and non-smooth problems
	Iterative optimization algorithms
	Optimization based learning for RapidMiner
	Download

	Smooth optimization
	Line search
	Search direction
	Gradient descent
	Newton method

	Smooth loss functions
	Least squares
	Gradient for least squares
	Hessian for least squares

	Logistic loss
	Gradient for logistic loss
	Hessian for logistic loss

	Smooth regularizers
	2 regularizer
	Gradient of 2 regularization term
	Hessian of 2 regularization term

	Group 1 regularizer
	Gradient of group 1 regularization term

	Line search algorithms
	Backtracking Armijo
	Wolfe's line search

	Non-smooth optimization
	Non-smooth Algorithms
	Subgradient descent
	Non-smooth loss functions
	Hinge loss
	Subgradient for hinge loss

	Nonsmooth regularizers
	1 regularizer
	subgradient of 1 regularization term

	Elasticnet regularizer
	subgradient of elasticnet regularization term

	Stochastic gradient descent
	1 regularized dual averaging

	OptimLearner Operator and Configuration
	Experiments
	Datasets
	First vs second order method
	Experiment setup

	Smooth vs non-smooth methods to nonsmooth problem
	Experiment setup

	Batch vs online method
	Experiment setup

	Non-regularized vs regularized
	Experiment setup

	Optim-plugin vs Rapidminer vs Weka
	Experiment setup

	Conclusion

