Poster Sessions

OTHER-OPTICAL SYSTEMS / SERS & PLASMONICS

OS-25 Determination of perfluorocarbon compounds in water using a mid-infrared attenuated total reflection sensor

B. Pejcica, F. Rauha, M. Schwenka, M. Myersa, L. Stalkera, B. Mizaikoffb a CSIRO, Earth Science and Resource Engineering, Kensington, WA, Australia b Institute of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm, Germany

OS-27 Optical pH sensor based on poly(4-nitrophenol) modified sol-gel nanoparticles

K. Balogha, L. Heilmannb, A. Széchenyib, B. Kovacsa

^aDepartment of General and Physical Chemistry, University of Pécs, Pécs, Hungary ^bJanos Szentagothai Research Centre, Pécs, Hungary

OS-29 New acridine-containing 1,2-dioxetanes as ultrasensitive labels in thermochemiluminescent bioanalysis

<u>M. Di Fusco</u>^a, M. Guardigli^b, M. Mirasoli^b, D. Calabria^b, A. Quintavalla^b, M. Lombardo^b, C. Trombini^b, A. Roda^b

^oAdvanced Applications in Mechanical Engineering and Materials Technology Interdepartmental Center for Industrial Research, Alma Mater Studiorum, University of Bologna, Bologna, Italy

^bDepartment of Chemistry "G. Ciamician", Alma Mater Studiorum, University of Bologna, Bologna, Italy

OS-31 Novel optical sensor systems at the fraunhofer EMFT

J. Schmidt, B. Gruber, <u>C. Goetz</u>, J. Sporer, R.Freund, S. Holler, S. Trupp Fraunhofer Institution for Modular Solid State Technologies EMFT, Workgroup Sensor Materials, Regensburg, Germany

SERS & PLASMONICS

SP-1 Biosensor based on Fano resonance on an array of gold nanoparticles

B. Spackova, H. Sípova, N. S. Lynn, P. Lebruskova, <u>J. Homola</u>
Institute of Photonics and Electronics, Academy of Science of CR, Prague, Czech Republic

SP-3 Biosensing with SiO₂-covered SPR substrates in a commercial SPR-tool

<u>J. Ryken</u>^{a,b}, J. Li^{a,c}, T. Steylaerts^a, R. Vos^a, J. Loo^a, K. Jans^a, W. Van Roy^a, T. Stakenborg^a, P. Van Dorpe^{a,c}, J. Lammertyn^b, L. Lagae^{a,c}

"IMEC, Leuven, Belgium

^bDepartment of Biosystems (MeBioS), KU Leuven, Leuven, Belgium

Department of Physics and Astronomy, KU Leuven, Leuven, Belgium

SP-5 Passive mixing structures for sensing performance enhancement of high-throughput sensors

M. Bockova^a, N. S. Lynn Jr.^a, J. Martinez-Lopez^b, <u>J. Homola^a</u>
^aInstitute of Photonics and Electronics, Prague, Czech Republic
^bTecnológico de Monterrey, Monterrey, N.L., México

SP-7 Clinical study of cerebrospinal fluid of Alzheimer's disease patients using an SPR biosensor

K. Mrkvova^a, Z. Kristofikova^b, J. Ricny^b, D. Ripova^b, M. Vyhnalek^c, J. Hort^c, J. Laczo^c, <u>J. Homola^a</u>

"Institute of Photonics and Electronics AS CR, Prague, Czech Republic

"AD Control Prague Bushistic Control Prague, Con

^bAD Centre, Prague Psychiatric Centre, Prague, Czech Republic

^cMemory Disorders Clinic, Department of Neurology, Charles University in Prague, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic

SERS & PLASMONICS

SP-9 Spatial resolution in prism-based SPRi: Toward individual living cells monitoring L. Laplatine^a, L. Leroy^a, R. Calemczuk^a, D. Baganizi^{a,b}, P. Marche^b, Y. Roupioz^a, T. Livache^a **SPFAM, UMRS**19 CEA/CNRS/UJF-Grenoble1, INAC, CEA-Grenoble, Grenoble, France **Institut Albert Bonniot, INSERM - UJF U823, France

SP-11 SPR transducers with internal referencing

S. Nizamov, V. Scherbahn, <u>V. M. Mirsky</u> Faculty of Natural Sciences, Department of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Grossenhainer, Germany

SP-13 Optical characterisation of nano-structured gold films to optimise the technology for biosensing applications

A. Naboka, A. Tsargorodskaya,b

^aSheffield Hallam University, Materials and Engineering Research Institute, UK ^bThe University of Sheffield, Department of Chemistry, UK

SP-15 SPR system for automatic detection of pathogens

M. Trzaskowski, T. Ciach

Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warszawa, Poland

SP-17 Application of surface plasmon resonance technique ("SPR nanoscopy") for the specific detection of single biological nano-particles

V. Shpacovitch^a, V. Temchura^b, P. Libuschewski^c, D. Siedhoff^c, F. Weichert^c, K. Überla^b,

°ISAS, Leibniz Institute for Analytical Sciences, Dortmund, Germany
bDepartment of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany

Department of Computer Science VII, Technical University of Dortmund, Dortmund, Germany

SP-19 Plasmonic nanoparticles optimized for single molecule detection: SERS analysis of oligonucleotides/miRNA

A. Virga^a, S. Ricciardi^a, A. Chiado^a, F. Frascella^a, P. Rivolo^a, C. Novara^a, A. Angelini^a, A. Lamberti^a, E. Descrovi^a, F. Geobaldo^a, <u>F. Giorgis^{a,b}</u>

^aDepartment of Appied, Science and Technology, Politecnico di Torino, Torino, Italy ^bIstituto Italiano di Tecnologia, Center for Space Human Robotics, Torino, Italy

SP-21 Nanoparticle detection and characterization using Surface Plasmon Polaritons

A. Demetriadou, A. Kornyshev

Department of Chemistry, Imperial College London, London, UK

SP-23 Facile and efficient synthesis of tunable plasmonic templates by electroless reduction of APNO:

N. Pliatsikas^a, K. Vassilopoulos^b, G. Vourlias^a, M.A. Karakassides^a, P. Patsalas^{a,b}
^aAristotle University of Thessaloniki, Department of Physics, Thessaloniki, Greece
^bUniversity of Ioannina, Materials Science and Engineering, Ioannina, Greece

Interface Processes

Application of surface plasmon resonance technique ("SPR nanoscopy") for the specific detection of single biological nano-particles

Shpacovitch Victoria¹, Temchura Vladimir², Libuschewski Pascal³, Siedhoff Dominic³, Weichert Frank³, Überla Klaus², Zybin Alexander¹

¹ ISAS, Leibniz Institute for Analytical Sciences, Dortmund, Germany; ² Dept. of Medical Virology, Ruhr Univ. Bochum, Bochum, Germany;

³ Dept of Computer Science VII, TU Dortmund, Dortmund, Germany;

Introduction

SPR nanoscopy represents a novel <u>label-free</u> analytical method for the detection of <u>single</u> nano-objects. SPR nanoscopy allows to perform <u>specific</u> detection of biological nano-objects. SPR nanoscopy helps to visualize the binding of nano-objects in <u>real-time</u>. Moreover, this method is useful for determination of <u>low concentrations</u> of biological nano-particles in aqueous solutions.

The method is based on the detection of single particles bound to the functionalized sensor surface. Functionalization could be performed different ways, for example, with target-specific antibodies.

SPR nanoscopy could be developed for a wide range of biomedical applications. Among them are: 1) detection the movement of nano-particles onto re-constructed bi-lipid membranes; 2) visualization the fusion of biological nano-particles with lipid membranes; etc.

Analytical characteristics of SPR nanoscopy Binding image of HIV virus-like particles (HIV-VLPs) Intensity step after particle binding

Detection of individual particles instead of particle layers

Classical SPR a) b) continue of vicine 2 max.

Classical SPR

The signal appears as a result of the shift of the resonance curve (after formation the layer of biomolecules onto sensor's surface)

SPR nanoscopy It is possible to visualize a signal because the appearance of concentric plasmon waves surrounding bound particle.

Outlook

 To develop an "array format" for simultaneous detection of different biological nano-objects.

2) To re-construct bi-lipid membrane onto sensor surface for further detection and visualization the movement and fusion of different biological nano-objects onto the sensor surface.

anld sensor

On-line monitoring of liquid media and air for the presence of target nanoparticles in minor concentrations.

Results of current study

Measurements of particle concentration

(200nm particles were used as a model)

SPR nanoscopy is applicable for analysis of samples containing serum.

Dependency of counting rate from

HIV-VLP concentration in probe

SPR nanoscopy specificaly detects the binding of bionanoparticles to sensor's surface (antibody against ovalbumin (OVA) were used). HIV-VLPs means HIV virus-like particles.

Before analysis

Analysis the sequence of recorded images SPR nanoscopy needs the development of new software for data analysis. Our colleagues from TU Dortmund already created a software, which successfuly analyzes images of 200nm particles.

References

E.L. Gurevich, V. V. Temchura, K. Überla, A. Zybin. Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sensors and Actuators; B160, (2011)1210-1215.

A. Zybin, Y. A. Kuritsyn, E. L. Gurevich, V. V. Temchura, K. Überla, K. Niemax. Surface plasmon resonance for detection of dielectric nanoparticles and viruses. Plasmonics; 5, (2010) 31–35.