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Abstract

Learning from data streams is a well researched task both in theory and practice.
As remarked by Clarkson, Hazan and Woodru� [12], many classi�cation problems
cannot be very well solved in a streaming setting. For previous model assumptions,
there exist simple, yet highly arti�cial lower bounds prohibiting space e�cient one-
pass algorithms. At the same time, several classi�cation algorithms are often suc-
cessfully used in practice. To overcome this gap, we give a model relaxing the
constraints that previously made classi�cation impossible from a theoretical point
of view and under these model assumptions provide the �rst (1 + ε)-approximate
algorithms for sketching the objective values of logistic regression and perceptron
classi�ers in data streams.

1 Introduction

Mining large datasets has become a highly relevant task with the massive increase in
data available. Much theoretical research has been devoted to studying such problems
either for data streams [19] where points are processed one by one with limited mem-
ory, or recently for distributed settings [18]. In this paper we discuss the possibility of
learning binary linear classi�ers, that is classi�ers separating two labeled point sets via
a hyperplane, in data streams. More precisely, we study loss-based linear classi�ers, in-
cluding logistic regression and perceptron classi�ers, where each point from the data set
is assigned a loss based on the relative position towards the hyperplane. The optimal
solution, that is the best-�t hyperplane minimizes the sum of losses incurred for each
point.

The usual approach for learning tasks in data streams is to summarize the data such that
the model learned from the summary is equal to or, far more likely, approximates the
model learned from the entire data set. For optimization problems, the model computed
on the summary is required to have an objective value with an (1 + ε)-factor of the
objective value of the optimum model computed on the entire dataset. Clustering [7, 15]
in particular has been subject to intensive research, though other topics such as subspace
approximation [23] and regression [13] have also been studied. Similar approaches are
not applicable for binary classi�cation. Consider as an example the objective function of
logistic regression L(w) :=

∑
xi∈X ln(1 + e−yi〈w,xi〉), where w is a hyperplane, xi a point

from the dataset X and yi ∈ {−1, 1} a class label. If the data is linearly separable, that
is, if there exists a hyperplane such that all points of di�erent labels are on opposing sides
of the hyperplane, the objective function approaches 0, otherwise the objective function
is at least ln(2). Hence, in order for the objective function of a hyperplane w to be
within an (1 + ε)-factor of the optimal objective function the summary is required to
determine whether or not the datasets are linearly separable. It is intuitively clear that
no algorithm can achieve this in polylog(|X|) space streaming algorithms aim for, as an
adversarial chosen input sequence can �rst submit all points from the class labeled 1 and
then submit a point from class −1. The last point can query the entire convex hull of the
thus far submitted points, which has a description size of O(|X|), see formal derivation
of the lower bound in Section 3.
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Instead of worst-case analysis, one might study suitable relaxations of the problem. Ran-
domly permuting the input sequence of a stream often yields better results, yet even
then linear classi�cation remains infeasible. Another approach of relaxing the problem
is smoothed analysis, �rst introduced by Spielman and Teng [24], where the perfor-
mance of an algorithm is measured against a random, polynomial small Gaussian per-
turbation of any given input. Our approach is similar, but di�ers in that our space
guarantees do not hold on expectation for a random perturbation, but for at least
one perturbation. Though this guarantee is weaker compared to smoothed analysis,
any algorithm with a feasible, i.e. sublinear smoothed-space complexity will likely re-
quire weaker performance measurement, see Section X. To formalize our claims, let
w ∈ R

d be an arbitrary unit vector. For every point x′ ∈ X we denote the aver-
age squared distance of x′ by CX(x′) := 1

n

∑
x∈X ||x − x′||22 and the w-projected aver-

age squared distance by CX(w, x′) := 1
n

∑
x∈X

(
wT(x− x′)

)2
. We say a perturbation

f(X) : X → R
d of X is γ-bounded if for all unit vectors w and points x ∈ X it holds

|〈w, f(x) − x〉| ≤ γ · max
x∈X

CX(w, x). The set of all γ-bounded perturbations of X is

denoted by Fγ(X). We now aim to study the following problem in in a data stream:

Problem 1 (γ-relaxed Logistic Regression). Let X = X+
⊎
X− be a d-dimensional set

of points, labeled {−1, 1}, and let γ > 0 be a parameter. Let

L(w, x) :=

{
ln
(
1 + e−〈w,x〉

)
if x ∈ X+

ln
(
1 + e〈w,x〉

)
if x ∈ X−

and let L(w) :=
∑

x∈X L(w, x) be the error function of logistic regression. Then the
γ-relaxed error function for a non-zero hyperplane w is de�ned as

Lγ(w) := max
f∈Fγ(X+)

∑
x∈X+

L(w, f(x)) + max
f∈Fγ(X−)

∑
x∈X−

L(w, f(x)).

The γ relaxed logistic regression aims to �nd a hyperplane w with

L(w) ≤ min
v∈Rd

Lγ(w).

For this problem we are able to obtain the following results.

Theorem 1. Let X be a set of n d-dimensional labeled points arriving in an insertion-
only stream in arbitrary order and let ε, γ > 0 be parameters. Then there exists a 1-pass
algorithm such that for any vector w, we can sketch the γ-relaxed error function of Logistic

Regression using Õ
(

log2 n
ε3
· 1
γd

)
memory with high probability.

Theorem 2. Let X be a set of n d-dimensional labeled points arriving in an inser-
tion/deletion stream in arbitrary order and let ε, γ > 0 be parameters. Then there exists
a 1-pass algorithm such that for any vector w, we can sketch the γ-relaxed error function

of Logistic Regression using Õ

(
log2 n
ε3
·
(

logn
γ

)d)
memory with high probability.
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Related Work

Classi�cation for Data Streams Various learning tasks such as clustering [7, 15],
regression [13, 23] and classi�cation have been studied in the streaming model. Specif-
ically regarding binary classi�cation, there has been extensive work on support vector
machines. Assuming the data to be separable, support vector machines aim to �nd a
hyperplane with maximum margin. In a streaming setting, algorithms produce sum-
maries of the data called coresets, such that a hyperplane with maximum margin on the
summary has an ε-approximate maximum margin on the original data. Coresets were
originally proposed in [2] interchangeably with extent approximations (see Section 2),
though now they have become a general design concept for various algorithmic problems,
see a survey by Agarwal, Har-Peled and Varadarajan [4]. Roughly speaking, coresets
generally summarize the data in a way that any query on the summary produces an
(1 + ε)-approximate answer to the query on the entire dataset. Assuming the data to be
separable, there exist maximum margin coresets for support vector machines [16]. More
generally, the optimization of support vector machines can be formulated in terms of the
minimum enclosing ball problem [25]. Coresets for the minimum enclosing ball problem
have been widely studied and algorithms have either storage requirements exponential in
d [2, 8], do not compute ε-approximate coresets [9, 21] or require multiple passes over the
data [12, 25].

Online Gradient Descent The original perceptron algorithm by Rosenblatt [22] cy-
cles through the dataset multiple times, updating the current model hyperplane w by
wnew := wold + yi · xi whenever wold misclassi�es a point xi. Each pass through the data
therefore takes time O(n · d) and the algorithm converges after a �nite number of passes
if the data is separable and obtains a hyperplane with ε-approximate maximum margin
after O(1/ε2) many passes. Clarkson, Hazan and Woodru� [12] gave an algorithm with
O(log n/ε2) passes and a total running time of O(log nε2(n+ d)). For non-separable data
and using only one scan over the data, the number of misclassi�ed points can be bounded
with large (i.e. non-constant) approximation factors for some descent schemes with stop-
ping criteria, see for instance [6, 14]. There also exists a very large body of work focusing
on the performance of an online gradient descent for convex optimization problems such
as logistic regression, see for instance [17, 26]. These bounds tend to better in terms
of misclassi�ed points and/or value of the objective function than those obtained for
perceptron classi�cation, but are also not independent of n.

2 Preliminaries

We denote a point set by X and the ith point by xi. If labellings are required, the
corresponding label is denoted by yi ∈ {−1, 1} and X := X−

⊎
X+, where X− and X+

the set of all points labeled −1 and 1, respectively. Further, some of the subroutines
assume the points to placed on a d-dimensional discrete grid {−∆,∆}d, so we similarly
assume the points to be placed. We will also refer to xi as the d-dimensional vector
associated with the ith point. Further, let n be the number of points and d the dimension.
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Figure 1: For any vector w, the extent of the polyhedron approximates the extent of the
entire point set with respect to w.

We denote by ||v||2 =
√∑d

i=1 vi the l2 norm of a vector v. The unit sphere Sd−1 is the set

of all vectors v with ||v||2 = 1 and ||M ||2 := maxv∈Sd−1
||Mv||2
||v||2 the spectral norm of a matrix

M . For a point set X, H(X) := {p ∈ Rd | ∃x1, x2 ∈ X∧λ ∈ [0 . . . 1] . p = λx1+(1−λ)x2)}
is de�ned as the convex hull of X and |H(x)| the space required to store the convex hull
of X. For a given statement E we denote by 1[E] the indicator variable that is 1 if and
only if the statement E holds. We characterize hyperplanes by their normal w. O�sets
to a hyperplane can be modeled by adding a further dimension to w and an entry 1
appended to each point. The normals of a hyperplane are not not normalized i.e. ||w||2
can be arbitrary. Given a hyperplane w, we say the halfspace h := {p ∈ Rd | 〈w, p〉 ≥ 0} is
induced by w. We denote the complementary halfspace of h by c := {p ∈ Rd | 〈w, p〉 ≤ 0}.
The mean of a point set X is denoted by µX = 1

n

∑
x∈X x and the population variance

σ2
X = 1

n

∑
x∈X ||x − µX ||22. We similarly de�ne the w-projected population variance of

X as σ2
X(w) := 1

n

∑
x∈X

(
wT(x− µX)

)2
. The average squared distance (ASD) of a point

a ∈ X is denoted by CX(a) := 1
n

∑
x∈X ||x − a||22 and the w-projected average squared

distance by CX(w, a) := 1
n

∑
x∈X

(
wT(x− a)

)2
. We drop X from the subscript if the

context is clear.

Our algorithms heavily rely on data structures approximating the extent in any direction.
The extent of a point set in direction w ∈ Sd−1 is de�ned as D(w,X) := max

x∈X
wTx −

min
x∈X

wTx. Intuitively, a subset of points approximating D(w,X) can be thought of as a

polyhedron with roughly the shape of the convex hull of a point set, see Figure 2.

De�nition 1 (γ-Approximation of a Point Set). Let X ∈ R
d be a set of points and

γ > 0 a parameter. Then a subset Q ⊆ X is an γ�approximation of X if for any vector
w ∈ Rd \ {0}

D(w,X) ≤ D(w,Q) · (1 + γ).

Sketching the extents of a point set in datastreams has been subject to extensive research.
The algorithm with the currently smallest space requirement (and to our knowledge the

only algorithm without any space dependency on n) of O
(

1
γd−1 logd−1 1

γ

)
maintaining the
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extent in insertion-only datastreams is due to Chan [10]. The only known sketch that
can be maintained for deletions from a discrete grid is due to Andoni and Nguyen [5]

with a space complexity of O

((
logn
γ

)d)
. γ-approximate sketches for the extent with

polynomial dependency on d are not possible, see Agarwal and Sharathkumar [3]. For
the remainder of this paper, we use such extent sketching algorithms as a black box,
denoting by APPROX(γ) the space required to maintain an γ-approximation. The time
required to query the extent from a sketch is typically constant, though speci�c queries
such as the vector u with minimum width have varying running times depending on the
sketch.

The following lemma relates the extent of point set to our perturbation measure.

Lemma 1. Let X be a set of points in R
d and let w be a hyperplane. Then

max
x∈X

CX(w, x) ≥ 1

4
D(w,X)2

Proof. Recall the bias variance decomposition:

CX(w, a) =
1

n

∑
x∈X

(wT (x− a))2 =
1

n

∑
x∈X

(wT (x− µX))2 + (wT (µX − a))2. (1)

Let a, b ∈ X be the pair of points such that D(w,X) = D(w, {a, b}). Then

max(D(w, {a, µX}), D(w, {b, µX})) ≥
1

2
D(w, {a, b}).

Assume without loss of generality that D(w, {a, µX}) ≥ 1
2
D(w, {a, b}). Then with Equa-

tion 1 we have

CX(w, a) ≥ (wT (µX − a))2 = (D(w, {a, µX}))2 ≥
1

4
D(w,X)2

3 Lower Bounds for Binary Linear Classi�cation

We reduce the problem for logistic regression from the one-way 2-party indexing problem,
where Alice has a binary bit string of length n elements and Bob an index k ∈ {1, . . . , n}.
Alice is allowed to send one message to Bob, whereupon Bob has to output the kth
index. The number of bits of the transmitted message required by any randomized
protocol succeeding with probability at least 2/3 over the random choices of the players
is in Ω(n), see [1].

Lemma 2. Let A be a subset of n points and let b be a single point in 2-dimensional
Euclidean space arriving after another in a data stream. Then any single pass randomized
algorithm deciding with probability 2/3 whether C(A) and b intersect requires at least Ω(n)
space.
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Proof. Let x ∈ {0, 1}n be Alice' bit string. For each i ∈ {1, . . . , n}, de�ne the point
pi = (sin(π · i/n), cos(π · 1/n)). By construction, pk is in the convex hull of any point set⋃
i∈I pi with I ⊆ {1, . . . , n} if and only if k ∈ I. Alice computes the convex hull C over

all points pi with xi = 1 and transmits a message to Bob. Similarly, Bob computes pk
and checks whether pk ∈ C.

Corollary 1. Let A and B be two sets of a total n points in 2-dimensional space arriving
in a data stream. Then any single pass randomized algorithm deciding with probability
2/3 whether A and B are linearly separable requires at least Ω(n) space.

Proof. Since the error function of logistic regression approaches 0 for linearly separable
data and is at least ln(2) otherwise, any streaming algorithm with multiplicative error
and constant success probability requires Ω(n) space.

For random order streams, we consider an instance where a single point p ∈ X− is in
the convex hull C(X+). The expected position of p in the stream is (n + 1)/2, hence
we are still required to store Ω(n) space. For a regularization term λ · ||w| added to the
error function, which prevents ||w|| from reaching ∞, we can rescale the input without
signi�cantly increasing the description size of the points. If the set of input points are
required to be distinct, i.e. if no two points have the same coordinates, Alice computes
points pi = (sin(π · i/(n + 1)), cos(π · i/(n + 1))) for i ∈ {1, . . . n} and additional points
a = (0, 1) = (sin(0), cos(0)) and b = (1, 0) = (sin(1), cos(0)). Vice versa, Bob can
alternatively compute an point p such that p ∈ C ∪{a, b} if and only if p ∈ C({a, b, pk}).

4 Streaming Classi�cation Algorithms

The main tool we use to sketch the point set is by counting points contained in halfspaces.
We start by studying the following

De�nition 2 (Approximate Perturbed Halfspace Counting). Let X be a set of points in
d dimensional space, ε, γ > 0 be parameters and let F be the set of γ-bounded perturba-
tions. Then Q is an (ε, γ)-approximate halfspace sketch if for every halfspace h in Rd we
have

Q(|h ∩X|) ≤ (1 + ε) · max
f∈F (X)

|h ∩ f(X)|.

Our aim is to sketch |h ∩X| via uniform sampling. In general when uniformly sampling
a subset A from X with probability p, we can estimate the number of points in h ∩ X
as |A∩h|

p
. The major drawback of this approach is that if |h ∩X| is very small compared

to |X|, then the probability of sampling a point from h ∩ X is either negligibly small,
or the number of sampled points will not be sublinear in n. Here the following simple
observation is helpful.

Fact 1. Let X be a point set and let h be a halfspace induced by a hyperplane w. Then
h ∩X 6= ∅ if and only if h ∩H(X) 6= ∅.

6



The key feature of our algorithm is the estimation of |h∩X| by counting intersections of
convex hulls of multiple sampled subsets of X with h. We do not estimate |h∩X| directly,
rather we choose a probability dependent on a choice number of possibly contained points
t and infer from the number of intersections whether |h ∩X| is su�ciently close to t or
not.

When randomly picking each point with probability p, the probability of picking at least
one point from a subset containing t elements is 1 − (1 − p)t. Setting 1 − (1 − p)t =
1
2
⇔ p = 1 − 1

2

1
t , we de�ne a family of probabilities p(t) for every possible number of

points t ∈ {1, . . . , n} contained in h ∩M . Using Cherno�-bounds, we will be able to
tell whether a given halfspace h contains close to t and in particular less than (1 + ε) · t
points from X. Any implementation of this estimation strategy would require storing the
convex hull of each subsample of X, which leads to a prohibitively large amount of space
requirement. However, if we allow perturbations on X, storing extent approximations
become a feasible alternative.

The section is now organized as follows...

Lemma 3. Let X be a set of points in R
d and let w be a hyperplane. Then there exists

a constant

Algorithm 1: HalfspaceCount

input: halfspace h, γ-approximations Aj of r subsets Xj of X independently
drawn with probability p(i), γ-approximation A of X

1 if h ∩ A(X) = ∅ then
2 return 0;

3 i← 1;
4 while i ≤ O(log1+ε n) do
5 y ← 0;
6 for j ← 1 to r do
7 if h ∩ Aj] 6= ∅ then
8 y ← y + 1;

9 if y ≤ (1 + ε/4) · r
2
then

10 return p−1(f(i));

11 i← i+ 1;

Lemma 4. Let X be a set of n points in d-dimensional space, let h be an arbitrary
halfspace and let ε, γ, δ > 0 be parameters. Then there exists an algorithm such that with
probability 1− δ we estimate a number a with

a ≤ (1 + ε) ·max
f
|h ∩ f(X)|,

where f is taken over all weakly γ-bounded perturbations of X. The algorithm uses
O( logn

ε3
(log log n+ log 1

ε
+ log 1

δ
) ·APPROX(γ)) space, where APPROX(γ) is the size of

a γ-approximation.
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Proof. We �rst analyse the estimation where we store the subsample Xj and subsequently
argue the existence of a weakly γ-bounded perturbation f for which Xj may be summa-
rized with Aj.

Let p(i) be the probability for which Algorithm 1 produced an output. We declare a
failure event Fi if, given that (1− ε) · ai ≤ |h ∩X| ≤ (1 + ε) · ai we have∣∣∣∣∣

r∑
j=1

1[h ∩Xj 6= ∅]−
r

2

∣∣∣∣∣ ≥ ε/4 · r
2
.

We say that the sketch fails indicated by the binary variable F if Fi = 1 for some i.

First, let |h ∩X| ≥ (1 + ε) · ai. Then the probability of sampling one of the points and
therefore with Observation 1, the probability P[h ∩Xj 6= ∅] is at least

1− (1− p(i))(1+ε)·ai = 1− (1− (1− 1

2

1
ai

))(1+ε)·ai = 1− 1

2

1+ε

.

Hence, E[
∑r

j=1 1[h ∩ Xj 6= ∅]] ≥
(

1− 1
2

1+ε
)
r. Using the Cherno� bound and some

straightforward, though tedious calculation, we can bound the deviation probability of∑
1[h ∩Xj 6= ∅] around its expectation by

P

[
r∑
i=1

1[h ∩Xj 6= ∅] ≤ (1 + ε/4) · r
2

]

= P

 r∑
i=1

Yi,j ≤

1−

1− 1 + ε/4

2 ·
(

1− 1
2

1+ε
)
(1− 1

2

1+ε
)
r


≤ exp

−
1− 1 + ε/4

2 ·
(

1− 1
2

1+ε
)
2

1

2

(
1− 1

2

1+ε
)
r


= exp

−
 1− 1

2

ε − ε/4

2 ·
(

1− 1
2

1+ε
)
2

1

2

(
1− 1

2

1+ε
)
r


≤ exp

−

(

ln(2)− ln2(2)
2
− 1

4

)
ε

2 ·
(

1− 1
2

1+ε
)

2

1

2

(
1− 1

2

1+ε
)
r

 (2)

≤ exp

−

(

ln(2)− ln2(2)
2
− 1

4

)2
ε2

8 ·
(

1− 1
2

1+ε
)

 r

 ≤ exp

(
− ε

2

98
· r
)
.

where equation 2 follows from the Taylor expansion

0 +

(
ln(2)− 1

3

)
x− ln2(2)

2
x2 +

∞∑
k=3

lnk(2)

k!
xk(−1)k+1
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of 1− 1
2

x − x/3 at x = 0.

The case where |h ∩ X| is less than (1 − ε) · ai can be argued analogously. Since ai
is exponentially growing in 1 + ε, we have O(log n/ε) choices of i. By setting r ∈
O
(

log logn+log 1
ε
+log 1

δ

ε2

)
the probability that our algorithm 'fails' is

P[F ] = P

[⋃
i

Fi

]
≤ 3 log n/ε · exp

(
− ε

2

98
· r
)
≤ δ.

Now we return to the original algorithm using γ-approximations. Let w be the hyperplane
inducing the halfspace h. Let ai be the estimated number of points contained in h. Since
Aj is a γ-approximation of Xj, there exists a function fj : X → R

d such that for any point
x ∈ Xj\H(Aj) we have fj(x) ∈ H(Aj) and ||fj(x)−x||2 ≤ 2γ ·D(w,Xj)

2 ≤ 2γ ·D(w,X)2

and any point x /∈ Xj\H(Aj) we have fj(x) = x. Further by Lemma 1

D(w,X)2 ≤ 4 ·max
x∈X

CX(w, x).

De�ne f : X → R
d such that f(x) = argmax

fj(x)

(
wTfj(x)

)2
. Then f is weakly 4γ-bounded

and conditioned on the event that the algorithm does not fail

ai ≤ (1 + ε) ·
∑
x∈X

1[wTf(x) > 0] ≤ (1 + ε) ·max
f ′

∑
x∈X

1[wTf ′(x) > 0],

where f ′ is taken over all weakly 4γ-bounded perturbations.

The total space requirement consists of r γ-approximations, each of size APPROX(γ)
for all O(log n/ε) choices of i.

To complete the proof of Theorems 1 and 2, we now show how L(w) can be written in
terms of points contained in halfspaces.

Lemma 5. Let X be a set of points labeled −1 or 1. Then for all w ∈ R
d, L(w) can

be approximated up to an (1 ± ε) factor by counting points contained in O(nd+1) many
halfspaces up to a (1 + ε) factor.

Proof. If w has in�nite norm, then L(w) = ∞, if there exists a misclassi�ed point and
L(w) = 0 otherwise.

We therefore assume from now on that w has �nite norm. Let pmax := argmax
x∈X

wTx

and pmin := argmin
x∈X

wTx. Since the norm of w is �nite, the interval (pmin, pmax) has

�nite length and the derivative of ln(1 + ex) is �nite within that interval. Hence, we can
approximate ln(1+ex) within that interval with �nite many expansions of 0th degree. For
each expansion at point a ∈ (pmin, pmax), consider the halfspace h := {p ∈ Rd | 1

||w|| ·w
Tp ≥

9



a}. The contribution L(w, x) of every point x to L(w) can be decomposed into

L(w, x) ≥ (1− ε) · (ln(1 + ea1) +
∑̀
j=2

(ln(1 + eaj)− ln(1 + eaj−1)) · 1[wTx ≥ aj]) (3)

L(w, x) ≤ (1 + ε) · (ln(1 + ea1) +
∑̀
j=2

(ln(1 + eaj)− ln(1 + eaj−1)) · 1[wTx ≥ aj]),

where aj is the jth expansion point, ` is �nite and a1 = pmin. Using Equation 3, we have

L(w) ≤ (1 + ε)(ln(1 + ea1) ·
∑
x∈X

1[wTx ≥ a1] +
∑̀
j=1

(aj − aj−1) · 1[wTx ≥ aj]),

and a similar lower bound.

Further, the number of subsets of n points induced by a d dimensional hyperplane is
in O(nd+1), see for instance [11] on range spaces and VC-dimension. With a datastruc-
ture querying the (approximate) number of points in any halfspace, we can approximate∑

x∈X 1[wTx ≥ a] for any expansion point a up to an 1 ± ε factor, resulting in an
(1 + ε)2 ≤ (1 + 3ε) approximation of L(w).

All random coins used by the algorithm can be sampled from a random seed of length
k · log n using pseudorandom generators for bounded space computation, see Nisan [20],
where k is the size of our data structure.

For the perceptron classi�er, where the loss function is de�ned as

L(w, xi) :=

{
0 if yi · 〈w, xi〉 > 0

1 if yi · 〈w, xi〉 ≤ 0
,

that is the loss function is essentially the points contained on the wrong side of the
hyperplane, the bounds carry over:

Corollary 2. Let X be a set of n d-dimensional labeled points arriving in an inser-
tion/deletion stream in arbitrary order and let ε, γ > 0 be parameters. Then there exists
a 1-pass algorithm such that for any hyperplane w, we can sketch the γ-relaxed error func-

tion of Perceptron Classi�cation using Õ

(
logn2

ε3
·
(

logn
γ

)d)
memory with high probability.

5 Conclusion and Discussion

In this paper we introduced a relaxed model for the previously infeasible task of learning
binary classi�ers from datasets. The model is similar to smoothed analysis in that we
do not consider worst-case inputs but perturbations, but di�ers in a few crucial details.
Unlike smoothed analysis we do not allow random perturbations, but show that there
exists a perturbation for which we can produce a feasible summary, making our model
seemingly weaker. Perhaps smoothed analysis can be applied in some way to measure the
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expected space complexity of a summary, but the probability by which we are required to
store (close to) the entire point set is constant. Therefore, if smoothed analysis can indeed
by applied in some way, it will require other restrictions to handle the probability space
over all perturbations or a di�erent way of measuring the performance of an algorithm.

Our algorithm exhibits two major drawbacks. Firstly, our perturbation measure is not
very robust with respect to outliers. Secondly, though we are able to query the objective
function of every candidate solution, we are not able to e�ciently compute is on the
summary as the point set is store implicitly. Future work will address both questions.
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