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1 Introduction

Cyber Physical Systems (CPS) are changing the face of future computing. Forthcoming
systems are mostly mobile and have a di�erent perspective compared to the stationary
solutions. During the last decade, number of these smart devices has been increasing
rapidly [1]. Consequently, complex decision making processes are replaced by many non-
stationary objects. These systems are available in a wide span of contexts. From sensing
modules, computing and even smart actuation devices [2]. In spite of speci�c name within
each �eld, the term entity is commonly used as a general concept for these objects.

A key advantage of these smart entities is the �exibility of the overall system structure.
Each device works as an individual entity while it can cooperate with local environment
and other entities. This makes systems with multiple cooperative schemes possible, lead-
ing to the highest structure �exibility. Entities can be added or removed from a system
at each instant while the rest continue operating. This �exibility and modularity is what
many applications such as materials �ow and logistics had always demanded [3, 4] .

Cooperation of entities requires communication in between them. This aspect has been
playing a critical role for developments during last few years. Its main expression is the
communication role in accordance to the Internet of Things (IoT) revolution. Accordingly,
research on communication systems specially in the wireless form has gained momentum.

Many researches in this �eld promise better throughput, larger communication distances
and higher quality of service. However, energy demand of these systems is still a chal-
lenging aspect for developing many CPS entities. Researches such as [5, 6] had shown
that the energy demand for wireless communication is much larger than the rest of the
energy demands in a CPS device. Although availability of ultra low-power components
made the overall IoT revolution possible, energy concerns are still available. Also, the al-
ways growing need for communicating more often, higher data rates and longer telegram
length intensi�es this quest.

A traditional systems with a battery assures an acceptable life cycle for an entity. How-
ever, increase in the communication demand in addition to the growing number of devices
requires more reliable energy solutions. For instance, PhyNetLab [7, 4] is an IoT based
futuristic warehouse. Such a warehouse would be equipped with up to some hundreds
of thousands nodes in a real application. When these entities are only equipped with
battery, number of communication has to be strictly managed. Moreover, a very high
success rate communication protocol is needed to avoid fast battery depletion. On the
other hand, regardless of e�ciency and quality of the communication, all batteries has to
be replaced after their limited life cycle. This will introduce a large maintenance e�ort
and cost that may threaten the feasibility of the whole IoT based warehouse solution.

To conquer the energy supply challenge for IoT devices, a continuous supply has to
recharge batteries and avoid constant reduction of energy level. Energy Harvesting (EH)
components are perfect solutions for such applications. An EH system provides a limited
amount of energy per time, but in a continuous manner. Therefore, batteries would act
more as an energy bu�er that balances energy di�erence between supply and demand. In
a well designed device there should be such a balance between the normal operation and
the power supply. Therefore, the extra bu�ered energy would be fed to the system during
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high demand events such as communication. Fortunately, most of these power demanding
operations are short term. Therefore, the life cycle of CPS expands exceedingly by a
proper balancing between communication intervals and harvested energy. In theory, such
a system will have an in�nite life cycle. Yet, the physical limitation of components such
as energy storage or harvester itself will limit this time. However, in any case it would
live much longer than an entity only powered by a battery.

There are multiple harvesting techniques available which can be used based on the �eld
of application. However, PhotoVoltaic (PV) is the most widespread form of EH [8] and
can be considered as the most mature solution among them. Therefore, PV is considered
as the harvesting type hereafter.

Introduction of each EH to a CPS has its own requirements. First, it has to be considered
that the collected power from a harvester is dependent on its operational condition. This
is mostly a nonlinear dependency, leading to a dynamic performance. This nonlinearity
for a PV cell can be simply seen in Figure 1.
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Figure 1: Harvested power from a Sanyo AM-1454 photovoltaic harvester under three
different indoor lighting conditions

As marked in Figure 1, there is a single point with the maximum generated power for
each operational condition. This point is commonly known as the Maximum Power
Point (MPP).

For an ultra low-power IoT system, every bit of harvested energy is essential. Therefore, a
harvesting system has to operate near the MPP. This task, commonly known as Maximum
Power Point Tracking (MPPT) is a traditional challenge in the �eld of PV harvesting.

There are multiple techniques available aiming for MPPT [9]. The number of these
techniques is so large that even some surveys are necessary to sort the publications for
the categorization and classi�cation of them. For instance, although [10] collected 30
techniques for MPPT, it had been extended in [11] to 62 methods.

In addition to the dynamic behaviour of the harvester, the storage voltage of an IoT entity
changes continuously during its operation as well. This changes are dependent to the
power delivered from the EH at one side and the current intake from the rest of the system
on the other side. If harvester and storage be connected directly to each other, these
voltage changes directly a�ect the harvester's performance. This performance reduction
is mainly a consequence of the voltage mismatch between storage voltage and the MPP
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voltage. To conquer this issue, a voltage matching system in between is necessary.

A voltage converter is able to keep the harvester's voltage at optimum while delivering
power to the storage at its voltage. Considering all these requirements, the overall chain
of energy supply would be as shown in Figure. 2.
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Figure 2: Complete power supply chain for an EH powered CPS

In this �gure, connections between harvester, converter and storage have no direction.
Although power is transferred from harvester in the direction to the storage, these physical
parameters are bidirectional. For instance, the operational voltage of the harvester is
a�ected by the converter through the MPPT process, though the power direction is from
the harvester to the converter.

This overall structure has some more functionalities than only voltage conversion. In
addition to conversion and MPPT, it also controls the storage. Therefore, it is more
proper to call such a system a charger than only a converter.

Although the PV generated power is in the DC form, there are EH devices which provide
an alternating current. In those cases, energy converter has to convert the harvested
energy to a DC signal �rst and subsequently match its voltage level to the DC voltage of
the storage.

MPPT algorithm has to be integrated in the converter system while it controls the EH's
voltage. Accurate MPPT techniques require large computing resources and energy. In
the outdoor application of the PV harvesting commonly known as solar energy, this
algorithms are acceptable; because MPPT energy demand is smaller than the energy loss
by operating at non-optimal voltage. However, these techniques are not feasible for most
of the IoT applications. These devices operate mostly in indoor environments with ultra
low harvesting potentials. Therefore, the energy demand for MPPT itself has to be very
small compared to its marginal harvesting improvement.

This stingy intuition to the energy overhead has to be kept for the power conversion
as well. Many di�erent converters' designs are available promising di�erent e�ciencies
with diverse �eld of application. Among this vast number of designs, switching based
techniques are preferred mainly because of their better e�ciency.

Available switching based converters have diverse e�ciencies for each working range ac-
cording to their switching algorithms. However, converters with Pulse Frequency Modu-
lation (PFM) switching strategies provide a better performance for the ultra low-power
range. [12]

Some IoT designers develop their ad-hoc conversion solution speci�cally designed for
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their entity. However, having MPPT, battery control, converter and switching logic
would require a series of components. These devices will increase the initial cost and
the overall energy loss overhead of this middle-ware between the EH and the storage.
Nevertheless, these issues can be conquered by integrating all these elements and logics
into one single chip. Currently, there are three Texas Instruments (TI) chips from the
BQ255XX series and ST (SPV1050) chip available o�-the-shelf, specially designed for low
energy environments. Among them, TI's BQ25505 and BQ25570 chips promise a better
performance out of the box and are dominant in the market.

Although multiple designers have used these chips in their IoT devices, no analytical
analysis on them is available. Some basic information about these devices are available
through their datasheets [13, 14]. However, for a reliable design and fast analysis of the
overall energy performance of an IoT device, these chips have to be modelled.

2 Modelling principles

Available modelling techniques can be categorised according to multiple aspects. One
of the most common categorisation is based on the level of knowledge from the internal
operation of the modelled system. This perspective divides modelling techniques into
three groups as followings:

2.1 White-Box Modelling

When the whole internal con�guration and relations of a system is being expressed by the
model, it is called White-Box Modelling. This method is commonly known for modelling
multiple physical principles.

Using Newtonian mechanics for formulation of force, acceleration and speed of an object
is a common form of this modelling view.

2.2 Black-Box Modelling

When the exact detailed internal vision from a system is not available, a data based
perspective has to be used. The most common modelling technique relying on the data
from a system is the Black-Box Modelling. In the black-box modelling, internal structure
of a system is completely ignored and model is only based on the relations between its
inputs and outputs (IO).

This type of modelling is commonly used by control engineers for designing observers and
controllers for complex industrial applications.
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2.3 Grey-Box Modelling

Although black-box modelling perspective is useful for some applications, its extreme
level of abstraction provides limited information for some use-cases. Therefore, there is a
third category of modelling techniques called Grey-Box Modelling which �ts in between
the two aforementioned methods. In this category some internal knowledge about the
interiors of the system is available. This is commonly a parametric model declaring
some relations1 of di�erent internal parameters. However, these parameters are unknown
and have to be identi�ed using implementation of the parametric model using IO data.
Moreover, outcoming model has to be evaluated for di�erent working areas of the system
to avoid unseen internal substructures and hidden behaviours.

2.4 Modelling techniques for converters

Generally, no chip manufacturer releases a detailed version of its product interior, at least
as long as it is active. The TI chips BQ25505/70 are also not excepted from this general
rule. Therefore, a white-box modelling is not possible and data-based techniques has to
be used. Since datasheets provide an abstract understanding of these devices, a grey-box
approach would be preferred.

3 Motivation

As mentioned, data based modelling methods rely on the collected data from the system.
Therefore, an accurate reliable set of data for modelling in addition to another indepen-
dent dataset for evaluation of the model are necessary. Generally, getting enough data
for an accurate model is a challenging task. It has to represent the whole system and
interaction of its internal parameters using di�erent combination of IO signals.

This paper provides a general roadmap for collecting this data for modelling DC-DC con-
verters for implementation in ultra low harvesting applications. Although TI BQ25505/70
chips are used during the procedure, this structure can be used with slight modi�cations
for other chips or even non integrated converter devices as well.

The rest of this paper is structured in a way that an abstract explanation of TI ultra
low-power chargers is explained �rst. Afterwards, con�guration of the measurement
platform including measurement device, chargers board and their connection is presented.
Speci�cation of measurements is given later on. Next, two separate experiments are
de�ned for modelling and evaluation of the model. Subsequently, analysis techniques for
the collected data and its post processing is provided. Finally, data storage is explained
shortly.

1These are not all possible internal relations. Each model has its own purpose and should be valid for
its desired application. Therefore, ignoring some internal relations of the system is acceptable as long as
the overall goal of modelling is intact.
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4 Device specifications

Any data-based model is only valid within the range of the data it is made from. On
the other hand, a reliable model has to include information for all its possible working
points. Therefore, measurements has to provide information for the whole operational
range. Consequently, information about the operational range of a device is required
before experiments designing.

For the current case explained here, some essential data about the device can be simply
collected from the manufacturer's datasheet.

4.1 Internal state machine

Based on the information from datasheets, operation of these chargers can be presented
with a state machine as shown in Figure 3.
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Figure 3: A simplified state machine representing charger’s operational states

Three operational states are available in these chargers as:

CS: Cold Start is when there is not enough voltage to run the internal MPPT circuit.
Therefore, input voltage is cut to 330mV.

NO: Normal Operation is when the MPPT circuit is operating while the required storage
voltage is available and the system is running normally.

OV: Over Voltage protection is when the maximum user de�ned storage voltage is
reached and the charger disables any further feed to the storage.

To change states, three transition conditions are foreseen, all relying on the storage
voltage (Vstr) as:

C1: Vstr <1.8V

C2: 1.8V< Vstr < Vov
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C3: Vov < Vstr

where the maximum allowed voltage of the storage (Vov) can be de�ned by the user
according to the desired hardware speci�cations.

A converter relies on its MPPT system from its input side and battery control on the
output side. Therefore, these two aspects are explained with more details.

4.2 MPPT

These devices such as many ultra low-power harvesters rely on fractional methods among
di�erent MPPT techniques. Fractional methods are built on the fact that the MPP is
usually a fraction of some parameters of the harvester. Consequently, this parameter
has to be sampled continuously. While continuous measurement will increase the energy
overhead, sample and hold principle [8] is used for ultra low-power applications.

In addition to low operational energy demand, this technique is a direct technique and
requires no prior knowledge from the harvester. This makes its implementation favourable
without worrying about the exact parameter values, operational condition and harvester's
production tolerances.

Two well known fractional methods used for the PV harvesting are Fractional Open
Circuit Voltage (FOCV) and Fractional Short Circuit Current (FSCC). The FOCV can
be simply formulated as:

kv =
Vmpp

Voc

< 1 (1)

Although this fraction had been reported to be between 75% to 80% of the open circuit
voltage (Voc) for PV harvesters [15], �nding the exact fraction value is a challenging
issues [9].

The same principle is reported that the current at the MPP is a constant fraction of the
short circuit current (Isc) as:

ki =
Impp

Isc
< 1 (2)

and the suggested value for the current fraction constant (ki) in PV application is mostly
about 85% [9].

In most cases, current measurement is done by measuring voltage at both sides of a
shunt resistor. Then the current is calculated based on the voltage di�erence and the
prior knowledge about the resistant value. Therefore, FOCV is preferred for the ultra
low-power applications. FOCV would be faster, requires less hardware and demands less
energy compared to the FSCC.

TI also uses a sample and hold FOCV MPPT algorithm. The exact kv fraction can be
set using two external resistors. In addition to the 75% to 80% for PV harvesters, TI
datasheets [16, 17] suggest a 50% fractional value for thermoelectric converters.

The sample and hold process of detecting open circuit voltage repeats every 16 s and each
MPPT measurement of Voc takes 256ms. However, as shown in the state machine of the
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charger in Figure 3 this process happens only when there is enough voltage provided from
the storage side in the NO state.

4.3 Battery Control

Both TI chargers are designed to support di�erent storage mediums. It can be a recharge-
able battery, supper capacitor or even a simple conventional capacitor. Storage acts as
a bu�er to handle demand peaks that the harvester cannot directly feed. Therefore, this
energy storage has to be protected on both extreme cases of over and under voltages.
Although under-voltage limit is internally programmed in these chips, over voltage level
can be programmed externally by user. Moreover, a �ag signal generated by charger
provides the possibility to inform the IoT device for the battery good condition [13, 14].

In addition to the voltage provided from the storage, the BQ25570 is able to provide
a secondary regulated supply via its buck converter. This supply can be programmed
externally and is able to provide an output with high e�ciency. Its output may be as
low as 10µA to high currents up to 110mA [14].

An abstract collection of other key speci�cations for TI BQ25505/70 chips is presented
in Table 1.

Table 1: Key operational parameters of TI BQ25505/70 from [13, 14]
specification min nom max unit
Input DC voltage 0.1 - 5.1 V
Input capacitance 4.7 - - µF
Storage capacitance 4.7 - - µF
Storage/battery(equivalent) pin capacitance 100 - - µF
Input inductance 22 - - µH
Total MPPT setting resistance 18 20 22 MΩ
Voc for 80% MPPT Vstr−0.015 - - V
Voc for 50% MPPT - - 15 mV
Charger’s cycle-by-cycle current limita - 230 285 mA
Input power for normal charging 0.005 - 510 mW
Maximum charger switching frequency - 1.0 - MHz
Storage voltage to switch from CS to NO 1.6 1.73 1.9 V
Minimum CS input power - 15 - µW

a) at storage voltage 4.2V, input voltage between 0.5V to 5V

5 Measurement configuration

In normal operation, charger would be connected to a harvester from the input side and
a storage device at its output. Collected data for modelling has to provide information
for all possible working points of the charger according to the harvester and the storage.
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To collect this data, both these elements should envelop their operational range during
the data collection process. In addition, this has to be carried out in a controlled way.

It is possible to force the storage voltage into a special value by use of an extra demand
current. However, this would require a complex closed loop control system to keep this
value constant during a measurement. Moreover, it adds some fast dynamics to the
system and may compromise collected data.

In addition, forcing a PV harvester to work under di�erent conditions and keeping it stable
is extremely hard if not impossible. This requires a complex modi�able light measurement
unit such as presented in [3, 18]. Even such measurement platforms have limited working
range which may lack some operational points of the harvester or converter. It would
be better to mimic the key aspects of a harvester to analyse the converter's behaviour
without any e�ect from the rest of system.

Hence, some extra devices has to reproduce the behaviour of the harvester and the storage
but in a completely controlled manner.

A PV energy harvester behaves mostly as a current source with a nonlinear relation
according to its voltage. This behaviour is shown in Figure 4 for a Solems PV cell
measured under some indoor lighting conditions.
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Figure 4: Voltage-current relation of a Solems cellule solaire Ref.05/048/032COA PV
harvester measured under three indoor lighting conditions

There are some speci�c devices able to reproduce such exact curves. Even though, repro-
duction of such curves is not necessary for the modelling. A converter only requires the
open circuit voltage from the harvester to calculate the MPP. Accordingly, in addition to
the current source value, the only critical parameter is the open circuit voltage.

A charger's model has to be independent from harvester's behaviour, while it has to be
valid for all di�erent kinds of harvesters.

The current source will represent the PV generated current and the open circuit volt-
age Voc can be reproduced by the compliance of the source. By setting di�erent current
values and compliance voltages, it is possible to reproduce key parameters of many PV
cells and analyse the converter's conduct for them.

On the storage side, the same principle can be implemented. The only critical parameter
required from a storage is its operational voltage value. It can be simply reproduced
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by a voltage source. Also, the maximum allowed current (before it burns out) can be
implemented as a current compliance.

Simultaneous to mimicking input and output by sources and compliances, the voltage
and current signals has to be measured as well. Therefore, a device able to provide a
current source and a voltage source while measuring the voltage and current at both these
channels is required.

5.1 Hardware

Before starting with the data collection, required hardware has to be prepared and con-
nected with each other. A short description of these devices is explained here.

5.1.1 Source Measurement Unit

As mentioned, one current source at input side representing the harvester and a voltage
source representing the storage are required. Voltage and current has to be measured
simultaneously on both sides as well. Based on these speci�cations, a Source Measure-
ment Unit (SMU) with two channels is required. A SMU has the bene�t of accurate
measurement while acting as a source.

As shown in Figure 4, some PV harvesters provide very small current as low as few micro
ampere in the indoor applications. Therefore, current source of the SMU has to be able
providing such low values. Moreover, its measurement has to be as accurate as one tens
of the lowest current value to assure acceptable measurement of all signals. Considering
maximum internal switching frequency of 1MHz, SMU has to have measuring frequency
capability of at least 3MHz to ful�l Nyquist sampling theorem. Based on all these
speci�cations, two SMUs from Keysight with model numbers B2902A and B2962A are
selected.

These devices are from the same family of the same producer equipped with two channels.
They are able to source current from 10 fA to 10.5A and voltages in the range between
100 nV to 210V with the maximum 31.8W power. Measurement precision of both de-
vices is 10 fA and 100 nV [19, 20]. Although both devices allow user de�ned source signal
generation, B2962A has more prede�ned source signal forms out of the box. Further-
more, they both support Standard Commands for Programmable Instruments (SCPI)
commands for communicating with a computer. This makes a systematic data collection
controlled by a computer program possible. In addition, both devices are calibrated by
authorized personal for an accurate measurement.

5.1.2 Charger board

Ultra low-power charger chips provide all required functionalities integrated in one de-
vice. However, some extra components has to be added for normal operation of them.
Resistors for MPPT fraction de�nition, capacitors for noise �ltering are some examples
of these components. Although it is simply possible to build up a running board for
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each chip, use of a certi�ed board would be preferred. While the collected data would
be used as a modelling reference, evaluation boards BQ25505-EVM and BQ25570-EVM

manufactured by TI are used for measurements. These boards provide a uni�ed certi�ed
running system which would be the same for all users. This avoids any problem due to
failure in the self production of the boards.

Schematic representation of both evaluation board is presented in appendices. Further
information about these boards can be accessed through TI datasheets in [16, 17].

5.2 Connections

For the measurements, SMU channels are connected to the jumper connections of the
evaluation boards as:

� SMU Channel 1 positive, to �VIN� from J1

� SMU Channel 1 negative, to �GND� from J2 or J3

� SMU Channel 2 positive, to �VSTOR� from J4

� SMU Channel 2 negative, to �GND� from J6

The overall hardware con�guration would be a simple system as shown in Figure 5.

Figure 5: The overall required hardware, including SMU and two evaluation boards

For the automatic data collection, SMU is connected to a PC through a USB or network
connection. On the user PC, a MATLAB® software is installed. It is able to communicate
with the SMU in both directions transferring data and SCPI commands. A MATLAB
.m program on the PC sends settings to the SMU, waits for the measurement to be
�nished and reads the collected data. It stores data and prepares the system for the next
measurement. This process makes a systematic data collection possible as it is also for a
mass data collection such as what is required for this application.
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5.3 Measurement specifications

To collect data, di�erent aspects of a system have to be considered. Data collection
experiments and their description would be de�ned based on these speci�cation explained
hereafter.

5.3.1 Signal types

Input and output voltages, currents and powers are the key parameters for modelling.
Since power can be reproduced using voltage and current, only these two parameters
are measured. Consequently, four signals including two voltages and two currents are
considered. All these signals has to be measured during an experiment.

In addition to the type and direction of signals, dependency of each signal has to be
de�ned. Independent signals are forced by the user, while independent values are only
measured. In addition, independent signals de�ne the speci�cation of sources.

Charger's input current is de�ned by the current source from channel 1 representing the
generated current from a PV harvesting. The input voltage of the converter is not a
�xed value. However, there is a maximum value for that which is the open circuit voltage
of the harvester. This value is implemented as the voltage compliance for the current
source.

A voltage source from SMU's channel 2 is connected at the output side of the converter.
This voltage is the representation of the storage voltage. Output current is a dependent
value which relies on other parameters and internal behaviour of the charger. No spe-
ci�c compliance for the current at the output channel can be considered except for the
maximum allowed current of the storage.

5.3.2 Signal range and accuracy

Level of the collected data granularity determines the level of details in the model. More-
over, polluted data as a consequence of stretching a system beyond its functionality limits
can compromise the resulted model [21]. Hence, range of signals and the accuracy of the
collected data has to be analysed carefully.

Using abstract information provided in Table 1, the input voltage range of measurements
may vary between 0.1V to 5.1V. Moreover, the maximum input charging power of
510mW limits the current range to 100mA with the maximum input voltage of 5.1V.

Output voltage of the converter is connected to the storage. Based on the device in-
formation, output (storage) voltages up to 5.5V are allowed. However, the default over
voltage limit for the evaluation board is 4.2V which is used here as well.

The minimum storage voltage may theoretically go as low as zero. However, when the
storage voltage is lower than 1.6V, device goes into the cold start state. In the cold
start mode, MPPT does not operate and a �xed input voltage of 330mV is implemented.
Consequently, the storage's voltage has no further importance. Therefore, the minimum
storage voltage of 1.5V would be logical to analyse all possible conditions. Also, storage
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voltages between 1.6V to 1.5V provide information from the cold start condition.

5.3.3 Measurement frequency

There is always a question of how much data is needed for the modelling purpose. Al-
though collecting all data is always an easy answer, it is mostly impossible or extremely
hard. To have all relationships at all levels in a system, enough data has to be collected.
After all, enough data is when it contains all relationships of interest in the model.

In addition to the data collection points, frequency of sampling is a critical aspect of
collected data size. A trade o� has to be done to sample with the optimum frequency in
a way that the required amount of data be collected and not more.

Most converters include switching electronics leading to some fast dynamics. When a time
based model with all these fast dynamics is desired, measurement has to be faster than
these dynamics to ful�l the Nyquist theorem. The internal dynamics of the switches in the
TI converters can be as high as 1MHz leading to sampling frequency higher than 2MHz.
However, in most IoT applications the stable behaviour or Periodic Steady State (PSS)
model is preferred. Modelling PSS signals leads to a static model based on the operational
condition and consequently is not time dependent.

Although measurement of PSS signals do not require fast sampling, single measurement of
signals at a working point is also not enough. Presence of noise in measurement in addition
to other dynamics in converters forces frequent sampling. The other interesting dynamic
in the behaviour of a charger chips is the measurement of Voc which lasts 256ms. This
information is required for understanding operational behaviour of the MPPT system.
Therefore, sampling frequency has to be fast enough to provide enough redundant data
from MPPT measurement periods as well.

Considering a sampling period of 50ms, will provide up to 5 samples during MPPT mea-
surement period. Hence, it is used as the sample time for the measurements representing
a 20MHz sampling frequency.

6 Data collection

Scope of each data collection has to be de�ned before starting with the collection itself.
Within the context of modelling, two type of experiments are required. One set of data
has to provide information about the PSS behaviour of the chargers, while another set
would be used subsequently for the validation of the models.

These two sets have to be independent from each other to avoid any model compromise by
over learning. Therefore, two independent experiments are designed for this application.

6.1 Modelling experiment

This experiment has to provide data from PSS signals at each operational point in ad-
dition to the MPPT values. A complete procedure of measuring all possible signals at
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an operational point take as long as one complete period of MPPT which lasts 16 s.
However, noise during MPPT sampling may cause unreliable data. Collecting data for
three MPPT periods will be a trade o� to have enough reliable data at each working
point. Consequently, a modelling experiment will be setting parameters for one opera-
tional point and measure all PSS signals for 1min (about three MPPT periods) with a
50ms sampling frequency.

Each charger has some initial internal behaviour. The exact reason for this �rst conduct
cannot be explained without internal knowledge from the device. Yet, based on their
dynamics, perhaps it is for charging some internal capacitors.

Collected data during this period is not valid while it is only an internal initialization
dynamic and will not happen during normal operation. Consequently, this time is only
a waiting time before each measurement.

In case any operational point be measured as a standalone experiment, this initialization
time overhead will extend the required time for the whole measurement set. If a series of
experiments run subsequently after each other, this extra time is not necessary for each
single initialization. While the internal capacitors do not lose charge to be pumped up
again after a new start.

In this concept, system starts in one combination of setting parameters and waits for
the initialization time. Afterwards, measurement and data storage starts. Signals are
kept constant for the desired period of 1min. When this time is passed, one independent
parameter changes instantly to a new value in a stepwise manner without disconnecting
other sources from the converter or interrupting data collection. This stepwise change of
parameter, sweeps the whole possible range of working points. At the end of the sweep,
measurement is stopped and the collected data get stored.

The size of step changes within the sweep de�nes the accuracy of the model in the
modelling phase. Smaller step sizes lead to more accurate models, though it increases
the data collection time. A trade o� has to be done between the time and accuracy of
the model based on the step size.

To keep the data from this modelling data collection scenario comprehensible, only one
of three possible independent parameters changes. Therefore, this experiment has to be
repeated for all combination of other two parameters. This process is a time consuming
scenario while actually three dimensions of parameters are being swept to collect all data
for the whole possible working space.

To select the most proper parameter for sweeping, it is better to analyse the normal
operation of an IoT entity. In a real scenario, nodes have a constant environmental
situation while the stored energy in the storage and its voltage continuously changes.
Therefore, the storage voltage (charger's output voltage) is considered as the changing
parameter here while the other two factors are kept constant. Using this concept, the
overall algorithm for this process is explained in Algorithm 1.

This algorithm is written in a very visual syntax. For each measurement device the
proper SCPI commands for each task has to be written and transferred to the device in
the right semantic.
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Algorithm 1 Process of collecting the modelling data
1: Ts = 50ms; {Measurement sample time}
2: Iin = xxx; {Supplied constant current}
3: Voc = xxx; {Open circuit voltage, compliance}
4: Vs,Max = 4.2V; {Maximum voltage on the storage side}
5: Vs,Min = 1.2V; {Minimum voltage on the storage side}
6: Steps = 100mV; {Voltage change of each step}
7: Stepd = 1min; {Duration of each step}
8: Tinit = xxx; {Initialization time, dependent on the input current}
9: Connect to SMU; {Define port no., device ID, data rate, buffer size, ...}

10: Setting CH1 Source; {Constant current source}
11: CH1 Transition trigger: ’none’; {Signal is constant}
12: Setting CH2 Source; {Sweeping voltage source}
13: N =[(Vs,Max − Vs,Min)/100mV]+1;
14: CH2 Number of transition trigger = N ;
15: CH2 Transition trigger period = Stepd;
16: {Sampling specification}
17: Number of sampling trigger = (N × Stepd)/Ts;
18: Sample time = Ts;
19: turn on ’CH1’, ’CH2’;
20: wait for Tinit;
21: turn on all triggers; {Transition and acquisation}
22: for T < N × Stepd do
23: Measure;
24: end for
25: turn off ’CH1’, ’CH2’;
26: read ’all measured data’;
27: Store ’data’, ’metadata’ in MATLAB;
28: Disconnect SMU;

Using this process, a dataset for each combination of input current and open circuit
voltage would be measured. One example of these collected data from a BQ25505 is
presented in Figure 6.

As can be seen in Figure 6, it provides all critical signals for the whole measurement rou-
tine. The storage voltage (output of the converter) starts from 4.2V and sweeps down
stepwise to 1.5V in 100mV steps. This produces 28 voltage steps in each measurement
set, each representing one possible operational point. One minute data is collected as-
suring three MPPT periods for each step. Considering the initialization time, each single
measurement takes about half an hour. It has to be noted that the trigger of the mea-
surement is planned in a way that the initialization time is not measured and can not be
seen in datasets and this �gures as well.

It is also possible to see in Figure 6 that every 16 s the MPPT algorithm detaches input,
to measure the open circuit voltage. This produces a jump in the input voltage equal to
the compliance voltage of the current source aimed to reproduce the Voc of the PV cell.
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Figure 6: PSS signals measured from TI BQ25505 at constant input current of 70mA
and open circuit voltage of 3.5V

The e�ect of this sudden change can be also seen in the input current signal is reduced
to zero for this period.

This process is repeated for multiple input current source values from as small as 1µA
up to 100mA. A graphical representation of all source current values is presented in
Figure 7.

10−6 10−5 10−4 10−3 10−2 10−1

Curren [A]

Figure 7: Graphical representation of all current values used for measuring datasets

Also, the open circuit voltage is changed in the range of 0.5V to 5V with 0.5V steps.
For each combination of these two parameters (source current and open circuit voltage) a
dataset same as the example shown in Figure 6 is measured. It has to be considered that
this procedure is done for both converters in the same manner. All in all, 540 datasets are
measured for each device providing a su�cient set of data, spanning the whole possible
working range of each charger.

6.2 Evaluation experiment

For any modelling procedure, some evaluation data is required in addition to the data
used directly for the modelling. These datasets has to be independent from each other
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to avoid unseen dynamics in modelling. Hence, a separate experiment has to be designed
specially for the evaluation purpose.

As mentioned before, three possible parameters are available which de�ne each oper-
ational point. In another word, the whole operational space of the converters can be
considered as a three dimensional space. During the measurement experiments, these
parameters were selected in a stepwise manner between two subsequent experiments.
Therefore, data from last experiment are just some sample point from this overall space.

Data about multiple conditions in between those points from the modelling experiments
are not known. Hence, it would be preferred to design evaluation experiment with a
changing parameter in a continuous manner. Among those three parameters, sampling
steps in both voltage parameters where de�ned in a very �ne fashion. Providing much
more information from these two parameters. Therefore, the input current is considered
as the variable factor for the evaluation experiment data collection.

It is possible to change the current simply as an upward or downward ramp or an ex-
ponential. However, some systems show di�erent dynamics according to the direction of
changes in the signal. Therefore, a sinusoidal current signal is used. The bene�t of a
complete sinus cycle is that it goes through each possible point twice. Once in increasing
manner and once reducing. This helps to reveal all dynamics of the converter, in case its
dynamics are dependent on the sign of change.

The overall process of this data collection is similar to the one formerly mentioned in
Algorithm 1. The di�erence is that in the evaluation experiments output side has a
constant voltage value while the input side changes in one sinusoid cycle. This signal
starts always at 50mA and increases to the peak of 100mA as the maximum allowed
input current. After that, it is reduced to zero and again upward till 50mA. The whole
process takes 1000 s which is the maximum user de�ned non-constant input signal by
the Keysight SMUs. The overall simpli�ed algorithm for this process is presented in
Algorithm 2.

The proper SCPI commands of each line of this visual algorithm has to be transferred
through a common programming language into the SMU.

An example of the measured data using this algorithm for the TI BQ25570 is presented
in Figure 8.

Since both voltages are kept constant during one experiment, multiple experiments are
possible by modi�cation of voltages. This experiment is repeated by changing the open
circuit voltage in the range of 0.5V to 5V and storage voltage between 1.5V to 4.2V for
both converters. Consequently, 280 sets of evaluation data is collected for each charger.

7 Data processing

Same as any other experimental data collection, these data are not free from noise and
other measuring irregularities. Moreover, as can be seen in Figure 6 and Figure 8, the
MPPT measurement procedure is also available in the data. These anomalies have to
be removed for the normal operation condition of the chip though they are necessary
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Algorithm 2 Process of collecting the evaluation data
1: Ts = 50ms; {Measurement sample time}
2: Voc = xxx; {Open circuit voltage}
3: Vstr = xxx; {Open circuit voltage}
4: SinB = 50mA; {Initial value of the sinusoidal current signal}
5: SinA = 50mA; {Amplitude of the sinusoidal current signal}
6: SinC = 1000 s; {Duration of a full sin cycle}
7: Tinit = 30 s; {Initialization time}
8: Connect to SMU; {Define port No., device ID, data rate, buffer size, ...}
9: Setting CH1 Source; {Sinusoidal current source}

10: CH1 Number of transition trigger = 1; {Only one cycle of sin}
11: CH1 Transition trigger period = SinC ;
12: Setting CH2 Source; {Constant voltage source}
13: CH2 Transition trigger: ’none’; {Signal is constant}
14: {Sampling specification}
15: Number of sampling trigger = SinC/Ts;
16: Sample time = Ts;
17: turn on ’CH1’, ’CH2’;
18: wait for Tinit;
19: turn on all triggers; {Transition and acquisation}
20: for T < SinC do
21: Measure;
22: end for
23: turn off ’CH1’, ’CH2’;
24: read ’all measured data’;
25: Store ’data’, ’metadata’ in MATLAB;
26: Disconnect SMU;

for modelling some other speci�cations such as the MPPT behaviour itself. Therefore,
�ltering would be the �rst step before any further analysis.

Moreover, each modelling experiment dataset is a combination of multiple working points
measured subsequently in one acquisition round. Hence, each modelling dataset has to
be broken down into multiple separate single operational points.

7.1 Filtering

While operational condition of the charger is kept constant, measured PSS signals have
to be constant as well. Any change in the signal which is not speci�cally de�ned during
the experiment can be considered as a measurement noise. This noise can be simply seen
in both examples shown in Figure 6, Figure 8.

A �lter has to remove jitters in addition to the MPPT sampling period while keeping
other changes in the voltage signal intact. Smoothing which is a commonly known �lter is
a moving average �lter acting as a low pass �lter. Although it removes small oscillations
in the signal, it modi�es the voltage changes as well which is not desired. This issue can

18



0.5

1

1.5

2

2.5

3

3.5
Vo

lta
ge

[V
]

Harvesting Storage

0 200 400 600 800 1000

0

20

40

60

80

100

Time [s]

C
ur

re
nt

[m
A

]

Figure 8: Example PSS signals measured from TI BQ25570 with a sinusoidal input
current, 3V open circuit voltage and a constant 3.5V storage voltage

be seen in Figure 9.
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Figure 9: A smoothing filter changes voltage steps into a slope

However, a moving median �lter can simply conquer this issue. Although it smooths out
the signal to some extend, it keeps the steps unchanged and in the same time instant.
While it uses the real measured values and not their average instead of them. However,
the key to a proper moving median �lter is selection of a proper moving window.

Removing the MPPT measurement pulse is a key desire of this �lter. Based on the infor-
mation from TI datasheet in [13, 14], MPPT sampling takes 250ms. While measurement
sample time is 50ms. Consequently, there would be maximum 5 samples during MPPT
measurement pulse. To remove these 5 samples, window size of the median �lter has
to be bigger than 5 at each side of this pulse. Therefore, a window size bigger than
12 would assure removal of the MPPT sampling pulse. To assure clean removal of the
MPPT measurement pulses, a moving median �lter with the window size 13 is used. This
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is shown with D13 {Vi} where D de�nes the use of median principle and 13 subscription
shows its window size. Outcome of applying this �lter on an example input voltage signal
is presented in Figure 10.
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Figure 10: Filtered input voltage signal using a moving median filter with window size
of 13 samples

7.2 Extraction

After �ltering noise, jitters and MPPT measurement pulses from signals, modelling ex-
periment has to be divided into its sub components. Each modelling dataset includes
measurement of multiple operational points compressed into one experiment. More-
over, for each working point there are three periods of MPPT providing redundant data.
Therefore, state of the system and operational status of each measured instant has to be
detected. Any change of the operational state is a consequence of an event in one of the
signals. Therefore, all events have to be detected.

7.2.1 Storage voltage change

During each modelling dataset, storage voltage changes in a stepwise manner. All steps
have the same size of 100mV. This signal is directly connected to the voltage source
and has really small oscillations. Applying the same moving median �lter used for input
voltage �ltration, will remove these sudden changes. These e�ect is shown in Figure 11.

To detect steps in the storage voltage, it is enough to check the di�erence of two subse-
quent signal instants in the �ltered signal from the last step. Any di�erence bigger than
70mV in this signal can be considered as a change in the storage voltage. This can be
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Figure 11: Filtered storage voltage signal using a moving median filter with window size
of 13 samples

formulated as:
Dvs = {Vi | |D13 {Vi−1} − D13 {Vi} | > 70mV} (3)

where Dvs is the set of sample instances with a change in the storage voltage D13 {x} is
the moving median �lter of x with the window size of 13 samples. Result of this detection
for an example data is shown in Figure 12.

7.2.2 MPPT measurement pulse detection

During the �ltration process, MPPT measurement pulses have been removed from the
raw data. However, its starting and end time is the matter of interest in this step and
has to be detected as events required for the system status detection.

As explained before, MPPT procedure is a time based series and repeats every 16 s.
Nevertheless, the starting point of this time series is dependent on the internal state
of the chip and cannot be predicted. Consequently, the staring point of this series can
happen at di�erent point of time according to the experiment. Therefore, it is possible to
consider the MPPT as a random behaviour which has to be detected and removed from
the data. Based on these speci�cations, MPPT measurement pulses �t into the de�nition
of outliers.

According to [22], outliers can be classi�ed into three di�erent categories as:

Point outliers: when an individual data outstands in respect to the rest of data.

Contextual outliers: when data is anomalous according to its speci�c context.

Collective outliers: when a collection of data is anomalous regarding the whole dataset.
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Although point outlier occurrence is possible in any data type, collective outliers are only
in related instance data possible [22]. The MPPT sampling pulse is a set of related data
which has an anomaly to the rest of the data for a single operational point. Therefore,
it �ts into the collective outlier de�nition.

Di�erent outlier detection methods provide label for each data instance which can be a
level of outlying from the rest or just a boolean marker pinning the exact outliers. While
detection of MPPT measurement periods is desired here, a boolean marker is preferred.

Although conceptual de�nition of outlier explains their speci�cation, a clear mathematical
criteria for detection of outliers is required here. Multiple explanation and detection
methods of outliers can be found in [23]. However, these methods compare each data
instant to a speci�c bound. Among di�erent values for this limits, a simple technique
explained in [24] is the Median Absolute Deviations (MAD) de�ned as:

MAD = median (|xi −median (xi) |) , i = 1, 2, . . . , N (4)

where N is the size of window used for calculating the median.

Using this de�nition, a data instance is an outlier when its value is more than three (or
more) scaled MAD from the median. This type of outliers are shown using Od

13s {•},
where d de�nes use of median and subscript shows the length of window for calculation
of the limit bound.

It is also possible to use the same concept with the averaging of the values in a window
and de�ne outliers when the value is more than three standard deviations from the mean.
This type of outliers are shown using Om

13s {•}.
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While a collective outlier is considered here, a window has to be de�ned which moves
over the data through the time for calculation of the median and mean. Selection of this
window size has to be analysed before implementation on the whole datasets. Using a
window size of 13 samples same as �ltering does not work properly. It can be seen in
Figure 13 that such a small window size is very sensitive to noise.
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Figure 13: A direct implementation of outlier detection using moving mean and median
with the window size of 13 samples

Although it is possible to change the detection criteria from three time to a higher value,
this value should be �ne-tuned for each single dataset. Moreover, detection using median
is much more sensitive to small oscillations in these data compared to the mean value.
To conquer these issues, a mean method with two window size of 16 s, 30 s are tested.
Window size of 16 s is large enough to include a whole period of MPPT. While the window
size of 30 s is large enough to include about two MPPT periods with only one MPPT
sampling pulse inside the window. Results of this detection method using both window
sizes are shown in Figure 14.

Although both of them detect about every MPPT measurement pulse, as can be seen in
Figure 14, they still have problem for detecting the MPPT measurement pulse at about
time 960 s. This is mainly a consequence of the voltage change scale before and after the
MPPT measurement pulse at this time instant and its scale compared to the open circuit
voltage. Unfortunately, di�erent trials on data using modi�cation of window size shows
no further improvement.

To solve this issue, data is normalized to remove the e�ect of its scale. Therefore, at �rst
the di�erence between raw signal and �ltered signal (using the moving median D13 {V }
from last part) is calculated. Afterwards, the same outlier detection method using the
moving median with a 30 s window is applied. Result of this methods is shown in Fig-
ure 15.

As presented in Figure 15, an outlier detection using a moving mean on a 30 s window of
the absolute value of the di�erence signal will detect all MPPT sampling pulses.

23



2.4

2.6

2.8

3
In

pu
t

vo
lta

ge
[V

]

Vh raw data

O
m 1
6
s

900 920 940 960 980 1000 1020 1040

Time [s]

O
m 3
0
s

Figure 14: Implementation of moving mean outlier detection with two different window
sizes
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Figure 15: A proper implementation of outlier detection on the normalized difference
input voltage signal

7.3 Labelling

After extracting all events in a dataset, data sections which have the same speci�cations
have to be labelled and considered as a single sub-dataset. Each period of data has to be
marked with two labels explaining charger's state and its operational condition.
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7.3.1 System state

As presented in Figure 3, TI's BQ chargers have three operational states including cold

start (CS), normal operation (NO) and over-voltage protection (OV). Switching between
these states is only dependant on the voltage level of the storage. Therefore, this speci-
�cation from the data can be directly extracted from the storage voltage.

By checking the storage level voltage for each set, charger's state label can be de�ned. A
4.2V is used as the maximum allowed voltage and any higher storage voltage is in over-
voltage protection. When storage voltage is between 4.2V to 1.75V, normal operation is
running. Also, cold start label is de�ned when the storage voltage is smaller than 1.75V.

7.3.2 Operation state

Operational states are another categorization of possible conditions

MPPT measurement: the period of sampling open circuit voltage.

Normal operation: when MPPT measurement is �nished, the exact MPP condition is
applied and the input condition is not changed.

voltage mismatch: duration of time that the input voltage is changed while the MPPT
logic holds the last value. Converter is not working at optimal harvesting operation
point during this time.

MPPT measurement and normal operation can only happen during the NO state of the
charger state. However, voltage mismatch may happen during all three charger states.

Each period of data has to be de�ned using extracted events from the last part. By
analysing events in a timely manner, each period between two subsequent events can
be labelled accordingly. The overall process of period detection can be simpli�ed as
presented in Algorithm 3.

Graphical representation of all operational states for an example dataset is presented in
Figure 16.

Each experiment dataset is broken down to its smallest pieces with all the signal values
and operational condition labels.

8 Data storage

After de�ning each period's label, a simple averaging of the signal values in the period
provides a reliable data representation of that speci�c part. This data is added as a
entry in a list. Each entry row has all four averaged signals in addition to two labels
de�ning the operational and charger's state labels. This procedure is applied on both 540
modelling datasets of each charger separately. By merging all collected data, a list with
more than 100 000 entries is prepared for each device. Each list provides a collection of
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Algorithm 3 Labelling system condition
1: LastEvent ← ’voltage-mismatch’ {no initial MPPT}
2: t = 0;
3: ∆t =50ms;
4: while t < tmax do
5: t = t+∆t; {next sample}
6: if MPPTStart := true then
7: Label ← ’MPPT’
8: else if MPPTEnd := true then
9: Label ← ’Normal Operation’

10: else if VStorageChange := true then
11: Label ← ’voltage-mismatch’
12: else
13: Label ← LastLabel
14: end if
15: end while
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Figure 16: Graphical representation of all operational labels during one modelling mea-
surement dataset

PSS signals in a wide operational range of the related device and can be directly used
for the modelling purpose. At the end, each dataset including raw and �ltered data,
measurement meta-data in addition to all labels is stored separately.

9 Conclusion

Power conversion between energy harvesting and energy storage modules is a critical
aspect for the future of IoT devices. It assures (near) optimal operation of the harvester
and improves the overall energy harvesting and storage process.
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For a proper design of the IoT energy supply, understanding this charging mechanism is
necessary. Hence, a detailed analytical model of the charger would be the ideal solution.
For the modelling purpose, all possible working points of a charger has to be analysed.

Although multiple ad-hoc solutions for power conversion are available, only few o�-the-
shelf chips are available with promising results for low-power harvesting. This work
focuses on two most recent Texas Instruments ultra low-power chargers, namely BQ25505
and BQ25570.

To collect reliable data from these charger chips, an accurate source measurement unit
represents harvester and storage behaviour in a totally controlled way. A SMU is able to
measure signals as well while it is acting as a source simultaneously.

An automatic data collection process is designed measuring voltage and currents of each
device at each operational point. During these experiments, the input voltage and current
are kept constant and the storage voltage is changing as the independent parameter. For
each device 540 sets of di�erent operational points are measured. The data is �ltered,
labelled and prepared for modelling. At the end, a list of more than 100 000 operational
data instances for each device is collected.

Another automatic data collection process is designed. This experiment uses a sinusoidal
input current as the independent parameter spanning the complete range of possible
currents. This provides evaluation data which is independent from the modelling data.
For each device 280 sets of evaluation data is collected.

All in all, the overall collected data would be enough for black-box or grey-box modelling
techniques to model these two ultra low-power chargers.
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Appendices

A Program

% ======================
% * This program gets the collected data from the BQ255xx -EVM

board collected
% * by:
% * Keysight source measurement units models:
% * B2902A Precision Source Measurement Unit
% * OR
% * B2962A Power Source
% *
% * It filters the data ,
% * removes the MPPT peaks
% * finds out the data state at each time instant
% * saves the data in a Matrix
% -----------------------
% * <<< COPYRIGHT >>>
% * Code written by: MOJTABA MASOUDINEJAD
% * email: mojtaba . masoudinejad @tu - dortmund .de
% -----------------------
% last modification : 30.03.2017 @ 14:20 in Dortmund
% ======================
clear all % clean up the workspace
Origin = '~\ BQ70_CP_Raw '; % Folder name of original data
Dest = '~\ BQ70_CP_Pro '; % Folder name of destination ( storage

)
Dest_Prob = '~\ DataProblems '; % Folder name for data with

error
cd (Origin) % go to raw data folder
Files=dir( fullfile ('*. mat ')); % get name of all available

xperiments
%cd ..
for j=1: size(Files ,1)

cd (Origin)
load(Files(j).name)
Data =eval(strrep(Files(j).name ,'.mat ',''));
BQ_Type = Files(j).name (3:4); % load data into a local

param
% -----------------------
V_oc = Data.Config.V_oc;
CH1_Device = Data.Config. CH1_Meas ;
CH2_Device = Data.Config. CH2_Meas ;
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Date = Data.Config.Date;
Ts = Data.Config. Sample_Time ;
MPPT_Perc = Data.Config.MPPT;
if Data.Config.C_In >= 1e-3

Cur =strcat( num2str (1e3*Data.Config.C_In),'m');
else

Cur =strcat( num2str (1e6*Data.Config.C_In),'u');
end
if Data.C_In >= 1e-3

Cur =strcat( num2str (1e3*Data.C_In),'m');
else

Cur =strcat( num2str (1e6*Data.C_In),'u');
end
Exp_type = 'CP';
Inductor = '22mH';
Msr_Err = 'No measurement error ';
T = Data.Raw.Time;
V = Data.Raw. Voltage ;
C = [Data.Raw. Current (: ,1) ,-Data.Raw. Current (: ,2) ];
if V_oc == 0.5

Voc='05';
else

Voc= num2str (10* V_oc);
end
In_Curr = [min(C(: ,1)),max(C(: ,1))];
V_Storage = [min(V(: ,2)),max(V(: ,2))];
% **********************
% Filtering data using moving median
% window should be at least as a MPPT period long at each

side
% MPPT takes 5 samples -> size =6
Window_Size = 6;
FV = movmedian (V ,2* Window_Size +1);
FC = movmedian (C ,2* Window_Size +1);
% find the operational stage of the BQ , based on the Vstr
% Logical operational stage
OV_State =(FV (: ,2) >=4.19); % overvoltage protection state
CS_State = (FV (: ,2) <=1.74); % cold start state
NP_State = bitand (~ OV_State ,~ CS_State );% normal operation

state
% numerical operational stage
OP_Stage = T*0;
% condition values:
% 0: Over voltage protection
% 1: Normal Operation
% 2: Cold start
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for i=1: size(OP_Stage ,1)
if OV_State (i)

OP_Stage (i) = 0;
elseif NP_State (i)

OP_Stage (i) = 1;
elseif CS_State (i)

OP_Stage (i) = 2;
end

end
% finding MPPT
% normalizes the data to avoid amplitude dependency
Diff_V = abs(V(: ,1) -FV (: ,1));
MPPT_Running = false(size(T));
% MPPT happens only during the NP_State
% MPPT is the outlier of a median with 15 second window

from each side
% overall median window size = 30 sec. (MPPT happens

every 16 sec .!)
MPPT_Running (any(NP_State ,2)) = isoutlier (Diff_V(any(

NP_State ,2)),'movmean ', 30*(1/ Ts));
% checking if a MPPT is missed
[rId , cId] = find( MPPT_Running ) ;
srId =[ rId (1 ,1);rId (1:end -1 ,1) ]; % shifting indexes to

find the distance
if max(rId -srId) >16.5*(1/ Ts) % if two subsequent MPPT are

further than 16.5 sec.
MPPT_Err = 'MPPT missed ';
Err_stat1 = true;
disp( MPPT_Err ) % showing type of error
Err = Files(j).name % no semicolon to see the error

on the workspace
else

MPPT_Err = 'No MPPT detection error ';
Err_stat1 = false;

end
% finding starting /end point of MPPT periods
Shifted_MPPT = MPPT_Running ;
Shifted_MPPT (2: end) = MPPT_Running (1:end -1); % shift data

1-bit
MPPT_Start = bitand(MPPT_Running ,~ Shifted_MPPT ); %

detecting rising edge
MPPT_End = bitand (~ MPPT_Running , Shifted_MPPT );% detecting

falling edge
% finding the step changes in the V_str
Vstr_Diff =[ abs(diff(FV (: ,2)));0]; % finding the

derivation
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V_Str_Changing =( Vstr_Diff >0.02); % finding the outliers
in the derivation

% finding starting /end point of the storage voltage
change

Shifted_V_Str_Changing = V_Str_Changing ;
Shifted_V_Str_Changing (2: end) = V_Str_Changing (1:end -1);

% shift data 1-bit
Vstr_Change_Start = bitand( V_Str_Changing ,~

Shifted_V_Str_Changing ); % detecting rising edge
Vstr_Change_End = bitand (~ V_Str_Changing ,

Shifted_V_Str_Changing );% detecting falling edge
% Finding and storing the system condition
% Building logical vector to define the system state
Normal_Running = false(size(T));
MM_Running = false(size(T));
Unstable_Running = false(size(T));
Cond_Index = [1 ,1 ,3];
j=1; % initialize labeling number
stat=T*0+3; % numerical state
% condition values:
% 0: MPPT running
% 1: Normal Operation
% 2: Storage voltage is changing , invalid data (

unstable )
% 3: Storage voltage has changed , system is operating

non - optimal till the next MPPT measurement
for i=2: size(T ,1)

if MPPT_Start (i)
Cond_Index =[ Cond_Index ;i ,0 ,0];
Cond_Index (j ,2)=i -1;
j=j+1;
stat(i)=0;

elseif MPPT_End (i)
Cond_Index =[ Cond_Index ;i ,0 ,1];
Cond_Index (j ,2)=i -1;
j=j+1;
stat(i)=1;

elseif Vstr_Change_Start (i)
Cond_Index =[ Cond_Index ;i ,0 ,2];
Cond_Index (j ,2)=i -1;
j=j+1;
stat(i)=2;

elseif Vstr_Change_End (i)
Cond_Index =[ Cond_Index ;i ,0 ,3];
Cond_Index (j ,2)=i -1;
j=j+1;
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stat(i)=3;
else

stat(i)=stat(i -1);
end
% Storing the state into the related logical vector
if stat(i)==1 % MPPT state is already stored

Normal_Running (i) = true;
elseif stat(i)==2

Unstable_Running (i) = true;
elseif stat(i)==3

MM_Running (i) = true;
end

end
% Preparing finishing value of the last row
Cond_Index (end ,2)=i;
% finding if a state is repeated
Cond_diff =diff( Cond_Index (: ,3));
if any( Cond_diff (: ,1) ==0)

Condition_Err = 'State mislabel ';
Err_stat2 = true;
disp( Condition_Err ) % showing type of error
Err = Files(j).name % no semicolon to see the error

on the workspace
else

Condition_Err = 'No mislabeling error ';
Err_stat2 = false;

end
% making the averaging
V_Avg = zeros(size(Cond_Index ,1) ,2);
C_Avg = zeros(size(Cond_Index ,1) ,2);
for i=1: size(Cond_Index ,1)

V_Avg(i ,:) = mean(V( Cond_Index (i ,1): Cond_Index (i ,2)
,:));

C_Avg(i ,:) = mean(C( Cond_Index (i ,1): Cond_Index (i ,2)
,:));

end
Voc_real =zeros(size(Cond_Index ,1) ,1)+V_oc;
Voc_operational =zeros(size(Cond_Index ,1) ,2);
Voc_operational (2:end ,1)= V_Avg (1:end -1 ,1);
Voc_operational (1 ,1) = V_Avg (1 ,1);
Voc_operational (3:end ,2)= V_Avg (1:end -2 ,1);
Voc_operational (1:2 ,2) = V_Avg (1:2 ,1);
Sys_Data = [Cond_Index ,V_Avg ,C_Avg ,Voc_real ,

Voc_operational ];
MPPT_stages = Sys_Data (any( Sys_Data (: ,3) ==0 ,2) ,:);
MPPT_stages = MPPT_stages (: ,4:8);
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Normal_stages = Sys_Data (any( Sys_Data (: ,3) ==1 ,2) ,:);
NS_Duration = Normal_stages (: ,2) -Normal_stages (: ,1); %

duration of normal state
NS_Short =any(NS_Duration <2*(1/ Ts) ,2); % is duration

shorter than 2 sec?
Normal_stages (any(NS_Short ,2) ,:) =[]; % remove too short

normal data
Normal_stages = [ Normal_stages (: ,4:9) ,100* Normal_stages

(: ,4) ./ Normal_stages (: ,9) ];
MM_stages = Sys_Data (any( Sys_Data (: ,3) ==3 ,2) ,:);
MM_stages = MM_stages (: ,4:10);
% **********************
% building the structure
State_Info = '[state 1st index , state last index , Label

No., Vin , Vout , Cin , Cout]';
Outcome_Info = ['MPPT: [Vin , Vout , Cin , Cout , Voc ];

Normal: [Vin , Vout , Cin , Cout , Voc , Voc from last MPPT
, Percentage ]; Mismatch : [Vin , Vout , Cin , Cout , Voc ,
Voc from last Normal operation , Voc from last MPPT]'];

Condition_Info = '0: Over voltage protection ; 1: Normal
Operation ; 2: Cold start ';

Label_Info = '0: MPPT running ; 1: Normal Operation ;
2: Storage voltage is changing , invalid data ( unstable
); 3: Storage voltage has changed , system is
operating non - optimal till the next MPPT measurement ';

BQ.Config = struct('Date ',Date ,'BQ_Type ',strcat('255 ',
BQ_Type ),'MPPT ',MPPT_Perc ,'L',Inductor );

BQ. Experiment = struct('Type ',Exp_type ,'I_pv ',Cur ,'V_oc ',
V_oc ,'Sample_Time ',Ts ,'In_Ch ',CH1_Device ,'Out_Ch ',
CH2_Device ,'In_Curr ',In_Curr ,'V_Storage ',V_Storage );

BQ.Time = Data.Raw.Time;
BQ.Raw = struct('Voltage ',V, 'Current ',C);
BQ.Filter = struct('Voltage ',FV , 'Current ',FC);
BQ.State = struct('Condition ' ,[], 'Label ' ,[]);
BQ.State. Condition = struct('Numerical ',OP_Stage ,'Info ',

Condition_Info ,'Over_Volt ',OV_State , 'Normal ',NP_State
, 'Cold_Start ',CS_State );

BQ.State.Label = struct('Numerical ',stat ,'Info ',
Label_Info ,'MPPT ',MPPT_Running , 'Normal ',
Normal_Running , 'Mismatch ',MM_Running );

BQ. Classified = struct('Data ',Sys_Data (: ,1:7) , 'Info ' ,
State_Info );

BQ. Outcome = struct('Info ', Outcome_Info , 'MPPT ',
MPPT_stages , 'Normal ',Normal_stages , 'Mismatch ',
MM_stages );

BQ.Errors = struct('Measurement ', Msr_Err , 'MPPT ',
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MPPT_Err ,'Labeling ',Condition_Err );
% -----------------------
% saving the structure
% defining the name
add = strcat('BQ',BQ_Type ,'_',Exp_type ,'_',Voc ,'_',Cur);
assignin ('base ',add ,BQ);
filename = strcat(add ,'.mat '); % building the mat name

for the data
if ~ Err_stat1 && ~ Err_stat2

cd (Dest)
save(filename ,add)

else
cd ( Dest_Prob )
save(filename ,add)

end
end
clear all
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Figure A.1: Schematic representation of the BQ25505-EVM evaluation board [16]
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Figure A.2: Schematic representation of the BQ25570-EVM evaluation board [17]
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