
Lean and Efficient System Software Product Lines:
Where Aspects Beat Objects�

Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schröder-Preikschat

Friedrich-Alexander-University Erlangen-Nuremberg, Germany
Computer Science 4 – Distributed Systems and Operating Systems

{dl, os, wosch}@cs.fau.de

Abstract. Software development in the domain of embedded and deeply em-
bedded systems is dominated by cost pressure and extremely limited hardware
resources. As a result, modern concepts for separation of concerns and software
reuse are widely ignored, as developers worry about the thereby induced mem-
ory and performance overhead. Especially object-oriented programming (OOP)
is still little in demand. For the development of highly configurable fine-grained
system software product lines, however, separation of concerns (SoC) is a crucial
property. As the overhead of object-orientation is not acceptable in this domain,
we propose aspect-oriented programming (AOP) as an alternative. Compared to
OOP, AOP makes it possible to reach similar or even better separation of concerns
with significantly smaller memory footprints. In a case study for an embedded
system product line the memory costs for SoC could be reduced from 148–236%
to 2–10% by using AOP instead of OOP.

1 Introduction

The domain of embedded and deeply embedded devices is dominated by 8 bit µ-
controllers with 0.25–4 KB of RAM and a few KB of flash memory. In 2000, more
than 98% of the total worldwide CPU production (8 billion entities) were dedicated to
the domain of embedded systems; 87% of the entities used in this domain were 8 bit
or smaller [47]. From the viewpoint of procurement, this “old-fashioned technology”
is still the best compromise with respect to functionality and costs. In areas of mass
production a few cents decide over market success or failure – a situation that cannot
be expected to change soon, given that the envisioned scenarios of smart dust [30],
ubiquitous computing [48], and proactive computing [47] crucially depend on the bulk
availability of very cheap, self-organizing “intelligent” devices.

Counting cents in hardware procurement basically leads to counting bytes in soft-
ware development. To cope with hardware cost pressure and extremely limited re-
sources, software developers for deeply embedded systems intentionally avoid modern
language concepts for a better separation of concerns (SoC), as they worry about the
thereby induced memory and performance overhead. Especially object-oriented pro-
gramming (OOP) is still little in demand, as some of its fundamental concepts (e.g., late

� This work was partly supported by the German Research Council (DFG) under grant no.
SCHR 603/4 and SP 968/2-1.

A. Rashid and M. Aksit (Eds.): Transactions on AOSD II, LNCS 4242, pp. 227–255, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

228 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

binding by virtual functions) are known to have non-negligible costs [20]. Hence, most
software development for embedded systems is still performed “ad-hoc” in C (often
even assembler) with a strong focus on minimizing hardware requirements. Organized
reuse and separation of concerns are often considered as less important.

1.1 System Software Product Lines

The common “ad-hoc” application-specific development approach is doomed to fail
for reusable system software, such as operating systems or light-weight middleware for
embedded devices. System software for this domain has to not only cope with the afore-
mentioned resource constraints, but also with a very broad variety of functional and non-
functional requirements [10]. It has to be tailorable to provide exactly the functionality
required by the intended application, but nothing more. This leads to a family-based or
product line approach, where the variability and commonality among family members
is expressed by feature models [16]. The tailorability of software product lines depends
mostly on the offered level of functional exchangeability (here denoted as variability)
and functional selectability (here denoted as granularity). Both, variability and gran-
ularity require a (right-unique) mapping from implementation components to the fea-
tures they implement; thus, a good separation of concerns. As the principal overhead of
OOP is not acceptable in this domain, we advocate to use aspect-oriented programming
(AOP) instead.

The AOP, as well as the OOP, provides means for a better separation of concerns.
Today, AOP is mostly perceived as an extension to OOP, which leads to the impression
that it has to induce similar or even higher overheads. This is understandable, as most
aspect languages are actually extensions to object-oriented languages like Java. For As-
pectJ [31], studies show furthermore that AOP concepts may indeed lead to some extra
overhead [21]. Nevertheless, the AOP itself is not limited to OOP. Language extensions
have as well been proposed for non-OOP languages (such as AspectC [12]) and multi-
paradigm languages (such as AspectC++ [46]). In these languages it is possible to use
AOP not only as an extension, but also as an alternative to OOP.

1.2 Objectives

This article shows that for the specific requirements of resource-constrained software
development, AOP can be superior to OOP. Our focus is not on separation of crosscut-
ting concerns and other structural benefits of AOP that have earlier been discussed in
many papers. Instead, we want to draw attention to a mostly unexplored benefit of AOP:
given a well-optimizing static weaver, AOP can provide SoC more resource-efficiently
than OOP. Our goals are in particular to:

– broaden the perception of AOP. Currently AOP is mostly perceived as an extension
to OOP for a better SoC. Understanding it as an alternative to OOP with respect to
resource-efficiency and hardware costs is a new point of view.

– attract new communities to AOP. Especially the systems and embedded communi-
ties have a profound skepticism regarding the suitability of high-level programming
paradigms (“everything beyond C”), as they (have to) favor efficiency over SoC.

Lean and Efficient System Software Product Lines 229

Demonstrating that with aspects it can be possible to reach SoC without having to
give up efficency would help to broaden the acceptance of AOP.

For these purposes, we conducted a study in which we compare the resource require-
ments of three implementations of the same embedded software product line. A highly
efficient C-based implementation that does not provide SoC, an object-oriented, and
an aspect-oriented implementation. We evaluate the OO and AO implementations re-
garding the techniques used to reach SoC. The focus is on the thereby induced costs.
While both implementations reach the SoC goals, the OO-based solution leads to sig-
nificantly higher resource requirements than the AO-based solution, which can compete
with plain C.

1.3 Structure of the Paper

The paper is organized as follows: in Sect. 2, we present our case study about an
aspect-oriented and an object-oriented implementation of an embedded software prod-
uct line. Both implementations are analyzed with respect to used idioms and poten-
tial cost drivers. In Sect. 4, these implementations are further investigated regarding
their resource requirements. The results are discussed in Sect. 5. Section 6 provides an
overview of related work. Finally, the paper is briefly summarized in Sect. 7.

2 Scenario

In the following, we present and analyze a case study of an embedded software product
line with three different implementations: C-based, OOP-based, and AOP-based. For
the sake of comprehensibility, we have conducted this case study in a more application-
oriented field. The scenario is an embedded weather station program family that should
be configurable in various different variants. It is a somewhat typical example of an
embedded application software product line. The identified patterns and results are,
however, equally relevant for the development of system software, which is our main
field of research.

2.1 Overview

A weather station variant basically consists of one or more sensors to gain environmen-
tal information and one or more actors to process the gathered weather data. Figure 1
shows the possible variants of the weather station as a feature model. Note that the list
of available sensors as well as actors is expected to grow in future versions, e.g., by ad-
ditional sensors for wind direction and humidity. Not visible in the feature model, but
nevertheless part of the product line definition, is that we have to distinguish between
two kinds of actors:

generic actors are able to process/aggregate information of any set of sensors. Display
and XMLProto are examples of generic actors. The XML representation of weather
information, for instance, can easily and automatically be extended for additional
sensors.

230 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

WeatherMon

Actors

... Alarm Display PC Connection

RS232Line USBLine Protocol

SNGProto XMLProto

Sensors

Temperature Air Pressure Wind Speed ...

Fig. 1. Feature diagram of the embedded weather station product line. A WeatherMon variant
consists of at least one sensor and one actor. Sensors gain information about the environment, such
as Temperature, Air Pressure, or Wind Speed. Actors process sensor data: weather information can
be printed on a (LCD-) Display, monitored to raise an Alarm if values exceed some threshold,
and passed to a PC through a PCConnection, which can be either an RS232Line or an USBLine,
using either an XML-based data representation (XMLProto) or a proprietary format (SNGProto).

non-generic actors process/aggregate sensor data of some specific sensors only. SNG-
Proto is an example for a specific actor. It implements a legacy binary data rep-
resentation for compatibility with existing PC applications. This format encodes
information of certain sensors only.

2.2 Hardware Platform

On the hardware side, sensors and actors of the weather station are connected to a small
µ-controller (Fig. 2). The AVR series by Atmel is a typical µ-controller product line. It
is based on an 8 bit RISC core and offered with a broad variety of on-board equipment:
0–4 KB RAM, 1–128 KB program memory (flash), various busses and connectors (I2C,
serial lines, A/D converters). Wholesale prices of the chip scale between 0.3 and 7 EUR.
They depend mostly on the on-board equipment, especially the quantity of RAM and
flash memory.

The goal is to reach a similar level of scalability in the software product line, so that
hardware costs do scale with the quantity of selected features.

Lean and Efficient System Software Product Lines 231

Fig. 2. Weather station hardware platform

2.3 Configuration Process

A weather station variant is configured by selecting features from the feature model.
Conceptually, the feature model can be considered as the description of the configura-
tion space, while a (valid) feature selection is a description of a concrete variant. In the
implementation space, a family model provides a mapping from the abstract features
to concrete implementation artifacts (such as .h and .cpp files) which implement the
selected features. The feature selection is evaluated against the configurations space by
a variant management tool [9], which copies the thereby defined set of implementation
artifacts from the component repository into an output directory. The build process is
then started in this directory to compile and link the configured system into the concrete
variant (Fig. 3).

The approach to map conceptual features by a family or platform model to concrete
implementation artifacts is quite common the domain of embedded system software
such as operating system product lines.1 The main advantages are flexibility and porta-
bility. By providing hardware-specific versions of the implementation space (family
model and implementation components), the same conceptual OS model and config-
uration tool can be used to “generate” highly optimized variants for very different µ-
controller platforms and derivates.

The overall configurability (variability and granularity) of such product lines depend,
however, on the (right-unique) mapping from implementation components to the fea-
tures they implement; thus, a good separation of concerns. As a matter of fact, many fea-
tures cannot be mapped to single (C-language) artifacts; their implementation is inter-
mingled within the implementation of other features. The result is scattered and tangled
code, typically processed by an intra-artifact “second-order configuration” by means
of the C preprocessor and conditional compilation. This hampers maintainability and
evolvability of the implementation artifacts and thereby limits on the long-term extensi-
bility of the whole product line. Hence, we strive for a better separation of concerns—as
long as it does not lead to significant extra costs on the hardware side.

1 Examples are eCos[1], PURE[10], or many implementations of the OSEK system software
standard used in the automotive industry [2].

232 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

Fig. 3. Weather station configuration process. In the configuration space the user selects all
wished features from the feature model (1). The implementation space consists of a family model
and a component repository. The family model maps features to logical implementation compo-
nents (2), which in turn are mapped to physical implementation files (3). The thereby determined
set of implementation files for a concrete configuration is copied into the target directory, and
finally compiled and linked into the actual weather station variant (4).

3 Implementation

In the following, we present and analyze two different implementations of the weather
station product line that fulfill the goal of SoC. One implementation is OOP-based,
while the other is AOP-based. The implementations were performed by two different,
but equally experienced developers. Both have been (under the premise that SoC has to
be achieved) carefully optimized with respect to resource requirements.

Lean and Efficient System Software Product Lines 233

A third “traditional” C-based implementation is solely optimized for minimal re-
source consumption. Its only purpose is to provide the lower bounds of the resource
consumption that can be reached in the different product line configurations.

The section is organized as follows: We start with a list of requirements in Sect. 3.1,
which is followed by a description of the three implementations (C in Sect. 3.2, OO
in Sect. 3.3, and AO in Sect. 3.4). These descriptions are intended as a brief overview
only. In particular, they do not motivate the chosen design of the OO and AO versions.
Instead, all design decisions and idioms used to reach SoC in the OO and AO versions
are discussed collectively (to set them in contrast with each other) in Sect. 3.5. The
results are summarized in Sect. 3.6.

3.1 Implementation Requirements

Besides the functional features that have to be implemented, the additional requirements
on the implementations can be summarized as resource-thriftiness (all versions) and
separation of concerns (AO and OO versions). This means in particular:

granularity. Components should be fine-grained. Each implementation element
should be either mandatory (such as the application main loop) or dedicated to
a single feature only.

economy. The use of expensive language features should be avoided as far as possible.
For instance, a method should only be declared as virtual if polymorphic behavior
of this particular method is required.

pluggability. Changing the set of selected sensors and/or actors should not require
modifications of any other part of the implementation. This basically means that
sensor/actor implementations should be able to integrate themselves into the sys-
tem.

extensibility. The same should hold for new sensor or actor types, which may be avail-
able in a future version of the product line.

3.2 Implementation of the C Version

Figure 4 shows the basic structure of the C version. Weather information is updated by
the measure() function, which invokes—configured by conditional compilation—all
existing sensors. For efficiency reasons, the actual weather data are passed as a global
variable (not shown). Weather information is processed by the process() function,
which invokes each actor (such as display_process())—again configured by means
of conditional compilation. The ..._process() function of each actor retrieves the
weather information for all configured sensors it is interested in—once more using con-
ditional compilation.

Due to the design goal to minimize the resource consumption, the C version does
not fulfill our requirements on SoC (granularity, pluggability, extensability). By using
global variables, conditional compilation, and inlining of all functions that are referred
only once, it offers, however, efficiency.

234 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

se
ns

or
 in

te
gr

at
io

n

init_sensors (main.c) measure (main.c) display_process (display.h)

inline void init_sensors(){ inline void measure(){
inline void display_process(){
 char val[5]; UInt8 line = 1;

#ifdef cfWM_WIND
 wind_init();

#endif

#ifdef cfWM_WIND
 wind_measure();

#endif

#ifdef cfWM_WIND
 wind_stringval(val);
 display_print(line++, val,...);
#endif

#ifdef cfWM_PRESSURE
 pressure_init();

#endif

#ifdef cfWM_PRESSURE
 pressure_measure();

#endif

#ifdef cfWM_PRESSURE
 pressure_stringval(val);
 display_print(line++, val,...);
#endif

} } }

 ...

ac
to

r
in

te
gr

at
io

n

init_sinks (main.c) process (main.c)
inline void init_sinks(){ inline void process(){
#ifdef cfWM_DISPLAY
 display_init();
#endif

#ifdef cfWM_DISPLAY
 display_process();
#endif

#ifdef cfWM_PCCON_XML
 XMLCon_init();
#endif

#ifdef cfWM_PCCON_XML
 XMLCon_process();
#endif

} }

m
ai

n
lo

op

main (main.c)
int main() {
 ...
 init_sensors();
 init_sinks();
 asm("sei");
 while(true) {
 measure();
 process();
 wait();
 } }

Fig. 4. Static structure of / scattered code in the C version (excerpt)

3.3 Implementation of the OO Version

Figure 5 shows the class model of the OO version. Central elements are the Weather

and Sink classes. Weather aggregates all sensors, which are registered at run time by
calling Weather::registerSensor(). The Sink class aggregates all actors, respectively.
Internally both, sensors and actors, are managed by chaining them into light-weight
single-linked lists (ChainBase).

Principle of Operation

1. Weather information is acquired by calling Weather::measure(), which in turn in-
vokes the Sensor::measure() method on every registered sensor to update the sen-
sor data.

2. Weather information is processed by the Sink::process() method.
Sink::process() first calls Actor::before_process() for each registered ac-
tor to initialize the processing.

3. Sensor information is passed to the actors by calling Actor::process() for each
registered sensor. Actors retrieve the actual sensor name, unit, and measured data
(as character strings) by calling the respective Sensor methods.

4. Finally, data processing is finalized by Sink::process() invoking Actor::after_

process() on each actor.
5. The whole process is repeated by the application main loop every second.

3.4 Implementation of the AO Version

The class/aspect model of the AO version is shown in Fig. 6. Central elements are,
again, the classes Weather and Sink. Each sensor class is accompanied by a han-

Lean and Efficient System Software Product Lines 235

+measure()

+name() : string

+unit() : string

+str_val() : string

+init()

Sensor

+registerActor(in a : Actor)

+process()

+init()

Sink

+registerSensor(in s : Sensor)

+measure()

+init()

Weather

+before_process()

+after_process()

+process(in w : Sensor)

+init()

Actor

_actors_sensors

«call»

+id() : string

+measure()

+name() : string

+unit() : string

+str_val() : string

+init()

Wind

+id() : string

+measure()

+name() : string

+unit() : string

+str_val() : string

+init()

Pressure

+before_process()

+process(in w : Sensor)

+init()

Display

+before_process()

+after_process()

+process(in w : Sensor)

+init()

SNGConnection

+send(in buf : string)

«alias»

PCConnection

ChainBase

_next

«registers»

«
r
e
g
is
t
e
r
s
»

«registers»

«
r
e
g
is
t
e
r
s
»

Fig. 5. Static structure of the OO version (excerpt with two sensors/actors, virtual functions are
depicted in italics, static functions are underlined)

dling aspect, which performs the actual integration into Weather and Sink. A han-
dling aspect performs two introductions: it aggregates the sensor as an instance vari-
able into class Weather and a sensor-specific (empty) process_data() method into
class Sink. Additionally, it defines function execution advice for Weather::measure()

and Sink::process. Actors are implemented as aspects, which define execution ad-
vice for Sink::process() (for initialization and finalization) and the sensor-introduced
Sink::process_data() methods (for the actual data processing).

Principle of Operation

1. Weather information is acquired by calling Weather::measure(), which is advised
by the handling aspects of every sensor to call the sensor’s measure() method.

2. Weather information is processed by the Sink::process() method.
Sink::process() is before-advised by any actor that needs to initialize be-
fore processing.

3. Sink::process() is advised for each sensor to call the introduced sensor-specific
process_data() method.

4. The sensor-specific process_data() method is advised by every actor that pro-
cesses data of this sensor.

5. Finally, data processing is finalized by Sink::process() being after-advised for any
actor that needs to finalize its processing.

6. The whole process is repeated by the application main loop every second.

3.5 Used AOP and OOP Idioms

To achieve the required level of SoC as well as pluggability and extensibility, both ver-
sions use approach-specific idioms and patterns in the design and implementation. In

236 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

+process()

+process_data(in d : Pressure)

+process_data(in d : Wind)

Sink

+measure()

Weather

+measure()

+name() : string

+unit() : string

+str_val() : string

Wind

+send(in buf : string)

«alias»

PCConnection+execution("void Weather::measure()") : after()

+execution("void Sink::process()") : after()

«aspect»

WindHandling

_wind

+measure()

+name() : string

+unit() : string

+str_val() : string

Pressure

+execution("void Weather::measure()") : after()

+execution("void Sink::process()") : after()

«aspect»

PressureHandling

_pressure

+print(in buf : string)

+execution("void Sink::process()") : before()

+execution("void Sink::process_data(%)") : after()

«aspect»

Display

+execution("void Sink::process()") : before()

+execution("void Sink::process()") : after()

+execution("void Sink::process_data(Wind)") : before()

+execution("void Sink::process_data(Temperature)") : before()

+execution("void Sink::process_data(Pressure)") : before()

«aspect»

SNGConnection

«introduces»

«introduces»

«introduces»

«introduces»

Fig. 6. Static structure of the AOP version (excerpt with two sensors/actors)

the following, we will analyze some interesting parts of the AOP and OOP implemen-
tations. The goal is to identify, compare, and discuss the idioms that have to be used to
reach SoC. In particular, the following problems had to be solved.

3.5.1 Working with Configuration-Dependent Sensors/Actors Sets
Both implementations have in common that the Weather/Sink classes are used to ab-
stract from the configured sets of sensors and actors. These two abstractions are un-
avoidable, because the main() function, which performs the endless measurement and
processing loop, should be configuration-independent and, thus, robust with respect to
extensions. However, the implementation of the 1:n relationship of Weather/Sink and
the concrete sensors and actors is completely different.

Interface dependency between Weather/Sink and sensors/actors
The Weather/Sink classes need to be able to invoke the measuring/processing of data
independent of the actual sensor/actor types. Otherwise, pluggability and extensibility
would be broken:

OO version: In the OO version, this is solved by common interfaces and late
binding. Sensors have to inherit from the abstract class Sensor, actors from the

Lean and Efficient System Software Product Lines 237

abstract class Actor, respectively. Weather/Sink invoke sensors/actors via these in-
terfaces, and thus depend on them. Sensor::measure(), Actor::before_process(),
Actor::after_process(), and Actor::process() have to be declared as virtual func-
tions:

struct Sensor : public ChainBase {
virtual void measure() = 0;
...

};
...
class Weather {
public:

...
void measure () {

for(Sensor* s = ...)
s->measure(); // virtual function call!

}
};

AO version: In the AO version, the interface relationship is reverted. Weather and
Sink do not depend on sensors/actors providing any specific interface. Sensors/ac-
tors are integrated by defining function execution advice for Weather::measure() and
Actor::process():

class Weather {
public:
void measure () {} // empty implementation

};
...
aspect PressureHandling {
public:
advice "Weather" : Pressure _pressure;
advice execution ("void Weather::measure()") : before () {

// non-virtual inlineable function call
theWeather._pressure.measure ();

}
...

};

Potential cost drivers: In the OO version, four methods in two classes have to be de-
clared and called as virtual functions. The AO version induces no costs, as all sensor/ac-
tor code can be inlined.

Working with sets of sensors/actors
Weather/Sink need to be independent of the actual number of sensors/actors configured
into the system. There is a 1:n relationship between Weather/Sink and sensors/actors:

OO version: In the OO version, this is solved by a simple publisher/subscriber mecha-
nism. Sensors are chained into a linked list of “publishers”, which is frequently iterated
by Weather::measure() to update the data of each sensor:

class Weather {
static Sensor* _sensors;

public:
Sensor* firstSensor() const {
return _sensors;

}
void measure () {

for(Sensor* s = firstSensor(); s != 0;
s = static_cast< Sensor* >(s->getNext()))

s->measure();

238 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

}
...

};

Actors are similarly chained into a list of “subscribers” which are invoked if new sensor
data are available. The Sink class acts as “mediator” between sensors and actors. For the
sake of memory efficiency, actors do not subscribe for single sensors, but are implicitly
subscribed for the complete list.

AO version: In the AO version, actors and sensors are implicitly chained at com-
pile time by multiple aspects defining advice for the same Weather::measure() and
Sink::process() execution joinpoints.

Potential cost drivers: In the OO version, Weather/Sink as well as sensors/actors need
to carry an extra pointer for the chaining. Some additional code is required to iterate
over the chain of sensors/actors.2

Registration of sensors/actors
This problem is closely related to the previous one. Sensors and actors need to be able
to register themselves for the publisher/subscriber chain:

OO version: In the OO version, registration is done at run time by calling
Weather::registerSensor()/Sink::registerActor(). Self-registration requires some
C++ trickery: Each sensor/actor is instantiated as global object. The registration is per-
formed by the constructor, which is “automatically” triggered during system startup.

AO version: In the AO version, no extra efforts are required for self-registration. The
chaining of actors and sensors is implicitly performed at compile time by advice-code
weaving. Basically, it is the presence of some aspect in the source tree that triggers the
registration.

Potential cost drivers: In the OO version, the use of global object instances causes some
overhead, as the compiler has to generate extra initialization code and puts a reference
to this code in a special linker section. A system startup function has to be provided that
iterates over this section and invokes the constructors of all global instances.

3.5.2 Implementation of Generic Actors
Generic actors process sensor data from any sensor type. For example, the Display actor
should print the measured values of any configured sensor, regardless of the current
configuration or future extensions with new sensor types. However, this leads to an
interface dependency between actors and sensors, because (at least) the value has to be
obtained in a generic way:

2 The firstSensor() and getNext() operations are, however, inlined as they perform just a
pointer lookup.

Lean and Efficient System Software Product Lines 239

OO version: In the OO version, this is again solved by interfaces and late binding. To
enable actors to retrieve sensor information from any sensor, the Sensor interface has
to be extended by three additional virtual functions: Sensor::name(), Sensor::unit(),
and Sensor::str_val():

class Display : public Actor {
public:

UInt8 _line;

// print a line on the display, increment _line
void print(const char *name , const char *val_str , const char *unit);
...
virtual void before_process() {

_line = 1;
}
// called by Sink::process for every sensor
virtual void process(Sensor* s) {

char val[5];
s->str_val(val);
print(s->name(), val, s->unit());

}
};

AO version: In the AO version, this is solved by using the AspectC++ con-
cept of generic advice [32, 35]. For every sensor MySensor, the corresponding
MySensorHandling aspect introduces an empty sensor-specific process_data(const

MySensor&) method into class Sink and gives advice to Sink::process() to invoke the
introduced method:

aspect PressureHandling {
public:
advice "Weather" : Pressure _pressure;
...
// introduce an empty process_data function for the pressure
advice "Sink" : void process_data(const Pressure &) {}
// call Sink::process_data for the pressure
advice execution("void Sink::process()") : after () {

theSink.process_data(theWeather._pressure);
}

};

An actor gives generic advice that matches every (overloaded) Sink::process_data()
function. To be independent of the actual sensor type, the advice body uses the As-
pectC++ joinpoint API to retrieve a typed reference to the sensor instance:

aspect Display {
...
// display each element of the weather data
advice execution("void Sink::process_data(%)") : before () {

typedef JoinPoint::template Arg <0>::ReferredType Data;
char val[5];
tjp->arg<0>()->str_val(val);
print(Data::name(), val , Data::unit());

}
};

AspectC++ instantiates advice bodies per joinpoint. Therefore, the calls to the actual
sensor’s str_val(), name(), and unit() methods can be bound at compile time. As an
additional optimization, name() and unit() are implemented as static (class) functions.

Potential cost drivers: In the OO version, three additional virtual functions are required
in the sensor classes, as well as an additional virtual function calls in the actor classes.

240 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

In the AO version, the joinpoint API has to be used for a uniform and type-safe access
to the sensor instance, which induces some overhead. Furthermore, the advice body of
a generic actor is instantiated once per sensor, which may lead to code bloating effects.

3.5.3 Implementation of Non-generic Actors
Non-generic actors process data of some sensors only. The legacy SNG protocol, for
instance, encodes weather data in a record of wind speed, temperature, and air pressure.
It exposes the actual data using sensor-specific interfaces. The record may be sparse,
meaning that a specific sensor, such as Temperature, may or may not be present in the
actual system configuration.

OO version: In the OO version, a non-generic actor filters the sensors it is interested in
by applying run time type checks in the process() method. Each passed sensor is tested
against the handled sensor types. If the run-time type matches with a handled sensor, a
downcast is performed to get access to the sensor-specific interface:

class Pressure : public Sensor {
static const char *_id;

public:
...
static const char * id () { return _id; }
const char *name () const { return _id; }

};
...
class SNGConnection : public Actor, protected PCConnection {

UInt8 _p, _w, _t1, _t2; // weather record
public:
virtual void before_process() { ... /* init record */ };
virtual void after_process() { ... /* transmit record */ };
...

// collect wind, pressure, temperature data
virtual void process(Sensor* s) {
const char *name = s->name();

if (name == Wind::id()) // pointer comparison
_w = ((Wind*)s)->_w;

else if (name == Pressure::id())
_p = ((Pressure*)s)->_p - 850;

else if (name == Temperature::id()) {
_t1 = (UInt8)((Temperature*)s)->_t1;
_t2 = ((Temperature*)s)->_t2;

} }
};

The idiom commonly used for run-time type checks in C++ is the dynamic_cast oper-
ator, which is part of the C++ run-time type interface (RTTI). RTTI is, however, quite
expensive, as it requires additional run-time support and leads to some extra overhead in
every class that contains virtual functions. To avoid this overhead, our implementation
uses a “home-grown” dynamic type-check mechanism: The test is performed by com-
paring the string address returned by the (late-bound) Sensor::name() method with the
address of the name string stored in the concrete class,3 which is also returned by the
static Sensor::id() method. The expensive C++ RTTI mechanism has been disabled.

Normally, dynamic type checks are considered harmful, because of a lack of exten-
sibility and the accumulated costs of type checks, which sometimes outweigh the costs

3 This basically reduces the overhead of a run-time type test to a virtual function call and a
pointer comparison. As the storage for the name string has to be provided anyway, this mech-
anism also induces no extra overhead in the sensor classes.

Lean and Efficient System Software Product Lines 241

of a single virtual function call. However, in our case a non-generic actor shall be im-
plemented. Therefore, extensibility is not an issue and the overhead of our type check
implementation is acceptable. At the same time, alternative designs such as a visitor
[24] fail, because a Visitor interface would have to list a visitSensor()method for
every sensor type. However, the set of sensors is configurable and should nowhere be
hard-wired.

AO version: In the AO version, binding an actor to selected sensors only is realized by
giving advice for specific Sink::process_data() methods only instead of using generic
advice:

aspect SNGConnection : protected PCConnection {
UInt8 _p, _w, _t1, _t2; // weather record
...
// let this aspect take a higher precedence than <Sensor>Handling
advice process () : order ("SNGConnection", "%Handling");

advice execution("void Sink::process(const Weather&)")
: before () { ... /* init record */ }

advice execution("void Sink::process(const Weather&)")
: after () { ... /* transmit record */ }

// collect wind, pressure, temperature data by giving specific advice
advice execution("void Sink::process_data(...)") && args (wind)

: before (const Wind &wind) {
_w = wind._w;

}
advice execution("void Sink::process_data(...)") && args (pressure)

: before (const Pressure &pressure) {
_p = pressure._p - 850;

}
advice execution("void Sink::process_data(...)") && args (temp)

: before (const Temperature &temp) {
_t1 = (UInt8)temp._t1;
_t2 = temp._t2;

}
};

Potential cost drivers: Run-time type checks in the OO version induce nevertheless
some overhead. In the AO version, some overhead is induced by the args() pointcut
function, which is used here to get the actual sensor instance.

3.6 Implementation Summary

Both, the OOP as well as the AOP implementation of the embedded weather station
product line provide good SoC. In particular, the implementation requirements de-
scribed in Sect. 3.1 are met by both versions:

granularity is achieved by the OO as well as the AO version. Each implementation
component is either mandatory (such as the Weather and Sink classes), or dedicated
to a single feature only.

economy is achieved as far as possible. In the OO version, only methods that have to
be available via a generic interface are declared as virtual. RTTI is not used, as the
required run-time type checks can be implemented with less overhead. In the AO
version, joinpoint-specific context information is used only sparingly.

242 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

pluggability is achieved as well. In both versions, no component has to be adapted if
the set of selected sensors/actors is changed. Sensors and actors basically integrate
themselves, if their implementation component is present in the configured source
tree. The OO version uses global instance construction for this purpose. In the AO
version, the integration is performed by advice.

extensibility is also achieved. In the OO version, new sensor/actor types just need
to implement the common Sensor/Actor interface. In the AO version, new sen-
sor/actor types just need to provide some aspect that performs the integration into
Weather/Sink.

Overall, the AO and OO versions are equipollent from the SoC viewpoint. We, how-
ever, identified noticeably more potential cost drivers in the OO version than in the AO
version. Especially virtual functions were unavoidable in many places to realize loose
coupling and genericity of components. In the next section, we analyze how this affects
scalability and memory demands of the product line.

4 Cost Analysis

In this section, we analyze scalability and memory requirements of the embedded
weather station product line. For this purpose, several configurations of the weather
station were generated as AO, OO, and C variants.4 For each variant, we measured:

– static memory demands, which are determined by the amount of generated machine
code (text), static initialized data (data), and static non-initialized data (bss).

– dynamic memory demands, which are determined by the maximum stack space
used by the running application (stack).5

– the run time of a complete measure/process-cycle.

On the actual hardware, text occupies flash memory space. Data occupies flash memory
and RAM space, as it is writable at run time and therefore has to be copied from flash
into RAM during system startup. Bss and stack occupy RAM space only.

4.1 Measurement Methods

Static memory demands (text, data, bss) could easily be retrieved directly from the
linker map file. Dynamic memory demands (stack) and run time had to be measured in
the running targets:

4 All variants were compiled with avr-g++ (GCC) 3.4.1 using -Wall -fno-rtti -Os
-fno-exceptions -fomit-frame-pointer -ffunction-sections optimization flags.
AO variants were woven with ac++ 0.9.3.

5 The weather station software uses no heap, which otherwise would also contribute to dynamic
memory demands.

Lean and Efficient System Software Product Lines 243

4.1.1 Measuring Stack Utilization
For simple programs it is possible to determine the stack utilization offline and byte-
exact by static analysis of the machine code. Unfortunately in our case the program
execution graph is not predictable due to the use of interrupts and late bound functions.
Therefore we used run-time monitoring of the stack as a pragmatic alternative. A com-
mon technique for run-time stack monitoring is to initialize the entire stack space with
some specific magic pattern during system startup. The maximum quantity of stack
used can then be measured at any time by searching (from bottom of stack) for the first
byte where the pattern has been overwritten.

In the weather station variants, this technique was used to implement stack measure-
ment as an additional sensor type. Understanding stack measurement as just another
sensor had some nice advantages. Because of the achieved pluggability (in the AO
and OO versions) it was very easy to apply stack measurement to any weather station
configuration. Of course, some extra care had to be taken to ensure that the maximum
stack utilization is not caused by the stack measurement sensor itself. For this reason,
the stack measurement implementation uses only global variables which do not oc-
cupy stack space. By analyzing the generated machine code we ensured that the stack
utilization of the stack sensor methods is minimal among all sensors. As all sensor
methods are invoked from the same call depth level, and at least one “real” sensor be-
sides stack measurement is used in a weather station configuration, it can thereby be
guaranteed that stack measurement itself does not tamper the maximum stack utiliza-
tion. In the actual targets, the thereby acquired maximum stack utilization remained
stable after a short startup time and could be read from one of the attached generic
actors.

4.1.2 Measuring Run Time
Run-time measuring was not implemented as another sensor type, as it had been too
difficult to distinguish the run time taken by the sensor processing itself from the
run time of the target to measure. Instead, we used a less invasive approach that
could be implemented with just two additional assembler statements: in the applica-
tion main loop, a digital I/O port of the AVR µ-controller is set to high before the
call to Weather::measure() and reset to low after the return of Sink::process(). The
result is a rectangular signal on this port, which was recorded and analyzed with a
storage oscilloscope.6 A high period in the signal represents the run time taken by a
complete Weather::measure() / Sink::process() cycle. After a short startup time, pe-
riod and phase of the signal remained stable, and the length of the high phase could be
measured.

4.2 Overall Scalability of the Product Line

As the graphs in Fig. 7 show, the resulting RAM/flash demands of the weather station
software do scale quite well with the amount of selected features. The “Barome-
ter” configuration (P+Display), consisting of just an air pressure sensor and an LCD

6 Tektronix TDS 2012, 100 MHz resolution.

244 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

512

1024

1536

2048

2560

3072

3584

4096

4608

5120

5632

F
la

s
h

(B
y
te

)

64

96

128

160

192

224

256

288

320

352

384

P+Display P+Display+

Serial+XML

PW+Display T+Display TWP+Serial+

XML

TWP+Serial+

XML+Display

R
A

M
(B

y
te

)

C Version AO Version OO Version

Fig. 7. Footprint comparison (RAM, flash) for different configurations

display, induces significantly smaller memory demands than the “Deluxe-PC” configu-
ration (TWP+Serial+XML+Display) which bundles three sensors, a LCD display, and
an XML-based PC connection over a serial interface. The memory requirements of
the other examined configurations are in-between. The noticeably high amount of flash
memory required by the “Thermometer” configuration (T+Display) can be explained
by the fact that this sensor is connected via the I2C bus to the µ-controller (see Fig. 2).
To drive this bus, additional driver code is required that has not been included for other
sensors.

Overall, all three versions meet the goal of scalability, which is an indicator for
achieved granularity. In every case, however, the OOP version requires significantly
more memory space than its AOP counterpart which comes very close to the C version.
Depending on the configuration, the required quantity of RAM is up to 138% higher in
the OO version, while the AO version takes only an extra of 10% at maximum (up to 13
byte)—both compared to the C-based version that does not provide SoC. The amount
of flash memory is up to 91% higher in the OO version, but only 4% at maximum in
the AO version. The net difference between using AOP and OOP has to be consid-
ered as even higher, as both versions of each configuration are linked with the same

Lean and Efficient System Software Product Lines 245

2
,9

6

1
,7

4

7
6
,4

0

7
9
,6

0

1
,7

3

3
,0

8

1
,8

2

7
6
,4

0

8
0
,0

0

6
0
,4

0

1
,2

1

5
9
,2

0

2
,9

6

7
7
,6

0

7
6
,4

0

1
,2

1

6
0
,8

0

1
,2

9

1

10

100

P+Display P+Display+

Serial+XML

PW+Display T+Display TWP+Serial+

XML

TWP+Serial+

XML+Display

T
im

e
(m

s
e
c
)

C Version

AO Version

OO Version

Fig. 8. Footprint comparison (time taken by a Weather::measure() / Sink::process() cycle)
for different configurations

(configuration-dependent) set of device drivers whose memory requirements are in-
cluded in these numbers.7

The run time of all three versions is almost the same in all configurations (see Fig. 8).
It is mostly dominated by hardware and driver-related costs.

4.3 Memory Requirements in Detail

Table 1 breaks down the required overall amount of RAM and flash memory into their
origins. It is evident, that the OO variants induce especially higher static memory de-
mands. The text sections of the OO variants are up to 78%, the data sections up to 284%
bigger than in the AO variants. The following cost drivers can be mainly accounted for
this:

virtual functions are the main source of additional code and data, as they induce over-
head on both, the caller and the callee side. On the caller side, each call to a virtual
function requires, compared to advice code inlining, at least 16 additional byte in
the machine code. On the callee side, virtual function tables have to be provided
(4 byte + 2 byte per entry, data), object instances need to carry a pointer to the
virtual function table (2 byte per instance), and constructors to initialize the vtable
pointer of an instance have to be generated (at least 24 byte per class, text). In the
“Barometer” configuration (P+Display), for instance, 52 byte of the data section
are occupied solely by virtual function tables.8

Regarding code size, the situation may become even worse in larger projects: due to
late binding, the bodies of virtual functions are never removed from the final image

7 As parts of the driver code are implemented as inline functions, it is not possible to differentiate
between driver-induced and application-induced code here.

8 The AVR RISC core uses a Harvard architecture; thus vtables cannot be placed in the text
section.

246 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

Table 1. Memory usage and run time of the AO and OO versions for different configurations

Configuration text data bss stack flash ram time

P+Display C 1392 30 7 34 1422 71 1.21

AO 1430 30 10 38 1460 78 1.21

OO 2460 100 22 44 2560 166 1.29
P+Display+ C 1578 104 7 34 1682 145 60.40
Serial+XML AO 1622 104 12 38 1726 154 59.20

OO 3008 206 26 44 3214 276 60.80

PW+Display C 1686 38 14 55 1724 107 2.96

AO 1748 38 18 61 1786 117 2.96

OO 3020 146 33 65 3166 244 3.08

T+Display C 2378 28 8 34 2406 70 1.74

AO 2416 28 11 38 2444 77 1.73

OO 3464 98 23 44 3562 165 1.82
TWP+Serial+ C 2804 90 17 35 2894 142 76.40
XML AO 2858 90 23 41 2948 154 76.40

OO 4388 248 39 41 4636 328 76.40
TWP+Serial+ C 3148 122 17 57 3270 196 79.60
XML+Display AO 3262 122 24 63 3384 209 77.60

OO 5008 300 44 67 5308 411 80.00

flash := text + data ram := bss + stack + data (Bytes) (ms)

by means of function-level linking. Thus, “dead” function code that is never called
at run time becomes nevertheless part of the text section.

dynamic data structures are another source of additional overhead. The chaining of
actors and sensors induces 8 additional data byte in the “Barometer” configuration,
plus some extra code to access and iterate over the lists.

global instance construction causes some more “hidden” code to be generated. For
each translation unit that defines one or more global objects, the compiler has to
generate a specific initialization-and-destruction function (88 bytes, text). Pointers
to these functions are additionally stored in the data section.

Regarding dynamic memory usage (stack), the differences between the AO and OO ver-
sion are less significant. The OO variants need a few byte (up to 16%) more stack space
than the related AO variants. This seems surprising at first, given that virtual function
calls cannot be inlined, which therefore lead to a higher call depth and, thus, higher
stack utilization. Part of this effect can be explained by the fact that the AOP version
requires some additional stack space as well, namely by context-binding pointcut func-
tions and the joinpoint API (2–4 byte). The main reason is, however, that the maximum
virtual function call depth is with two levels quite low. As the AVR architecture pro-
vides 32 general-purpose registers, which are also used for passing function parameters,
it can furthermore be considered as quite “stack-friendly”. On other CPU architectures
(such as Intel), the differences between AO- and OO-based solutions would be more
significant.

4.4 Run-Time Requirements in Detail

Table 1 also lists the measured run times in detail. In all configurations that support a
serial connection the measurement/processing cycle time is mainly dominated by the

Lean and Efficient System Software Product Lines 247

underlying serial device driver. Here, the costs are almost the same. In all other config-
urations the performance of the AO version and our highly efficient C implementation
are the same. The run-time overhead of the OO version is between 4 and 6.6%. It can
be explained with the numerous virtual function calls on the application level.

4.5 Cost Analysis Summary

Both, the AO and OO version of our product line, scale quite well. The run-time differ-
ences are small and only of minor importance in this domain. The OO version, however,
induces dramatically higher memory requirements. Given a hardware product line like
the AVR ATmega series, these differences can directly be mapped to the required µ-
controller features. As Fig. 9 shows, the hardware costs of the C-based and AO-based
product line would be exactly the same in all configurations. Using AO versus OO leads
even for our small example product line to significant differences regarding hardware
costs. This effect would probably be even higher for larger product lines.

€1,17 = ATTINY26L (2K Flash, 128 RAM)

€1,77 = ATMEGA88V-10 (8K Flash, 512 RAM, I²C, UART)

€1,26 = ATMEGA48-20 (4K Flash, 512 RAM, I²C, UART)

€1,00

€1,10

€1,20

€1,30

€1,40

€1,50

€1,60

€1,70

€1,80

P+Display P+Display+

Serial+XML

PW+Display T+Display TWP+Serial+

XML

TWP+Serial+

XML+Display

C Version AO Version OO Version

Fig. 9. Hardware scalability (required µ-controller variant) of the AO and OO versions for differ-
ent configurations (wholesale prices: Digi-Key Corporation, Product Catalogue, Summer 2005)

5 Discussion

As pointed out in the previous sections, the AOP-based version of the weather station
product line combines good SoC with high memory efficiency. In the following we dis-
cuss the principal reasons for this effect, the potential disadvantages, and to what degree
our results are applicable to (system software) product lines in general and achievable
with other AOP approaches.

5.1 General Advantages of the Approach

To ensure variability and granularity in product lines, components need to be imple-
mented in a fine-grained and loosely coupled way. In our case study, we identified three

248 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

fundamental concepts that are required to reach this: Abstraction from concrete compo-
nents (interfaces), abstraction from component sets (1:n relationships), and abstraction
from component integration (self-pluggability). The major disadvantage of OOP is that
the features it provides to reach these goals are basically run-time concepts, while with
AOP (in the case of static weaving) it is possible to use compile-time concepts:

abstraction from concrete components requires to use interfaces and run-time bind-
ing in OOP (thus, virtual functions in C++), while in AOP advice code is woven at
compile time to the joinpoints (and in AspectC++ is even inlined).

abstraction from component sets requires to use some kind of run-time data struc-
tures in OOP, such as linked lists, while in AOP multiple advice can be woven at
the same joinpoint. Moreover, by means of aspect ordering, it is even possible to
define a context-dependent invocation order.

abstraction from component integration is generally difficult to achieve in most
OOP languages. In C++ it requires some constructor trickery to perform the inte-
gration at run time. In AOP, Advice is per se an integration mechanism and resolved
at compile time. Moreover, aspects provide means for context-sensitive integration:
Giving advice for a specific joinpoint can be understood as a weak reference to an-
other component, as the advice is silently ignored if the joinpoint does not exist.

5.2 Compiler Issues

As pointed out in the analysis, much of the extra overhead of the OO version is directly
or indirectly induced by the costs of late binding, even though the extra flexibility at run
time is not required in every case. Much work has been conducted to reduce the costs of
C++ virtual functions [3, 8] and late binding in general, e.g., by static whole program
optimization [18]. This gives rise to the question, if and to what extent the measured
OO overhead could be prevented by better compilers.

Especially in the context of the highly complex and non-academic programming
languages C and C++, which are the state of the art in system software and embedded
software development, the implementation of optimizations based on static whole pro-
gram analysis is extremely difficult. Although many of the aforementioned algorithms
and techniques were proposed at least 10 years ago, today’s commercial compilers have
not incorporated these innovations yet. The main reasons are their complexity and exist-
ing de-facto standards like object file formats and ABIs.9 Therefore, we pragmatically
advocate for using OO and AO mechanisms in combination in order to get the best out
of both worlds. While OO is well suited for applications that actually need dynamism,
static advice weaving is an interesting alternative that avoids the OO overhead from the
beginning if dynamism is not required.

5.3 Applicability to System Software

Compared to application software product lines, system software product lines have to
fulfill even higher demands on configurability and resource-efficiency. With respect to
efficiency, the aforementioned abstractions are particularly useful in system software:

9 ABI = Application Binary Interface.

Lean and Efficient System Software Product Lines 249

efficient callbacks by advice code inlining. System software usually has to provide
means to bind user-defined code to (asynchronous) system events, such as hardware
interrupts in an operating system. To prevent uses-dependencies [41] of the sys-
tem code to driver/application code, a callback or upcall mechanism via function-
pointers has to be provided. This leads to extra overhead and higher latencies at
run time. As aspects reverse such dependencies [14], they provide means to break
user-dependencies without this extra overhead.

handler chains by multiple advice. The implementation of handler chains can be im-
plemented by the same mechanism as single callbacks. Due to advice code inlining,
this furthermore induces no additional overhead.

configurable initialization order by aspect precedences. In system software it is
often necessary to initialize components and subsystems in some well-defined
(partial) order during system startup. The order is determined by component-
interdependencies; however, not necessarily fixed in the case of configurable prod-
uct lines. It may well depend on the actual configuration. By aspect precedences
(given as order advice in AspectC++), aspects provide perfect means to solve this
problem at compile time.

5.4 Potential Disadvantages of the Approach

The advantages regarding resource efficiency are mainly caused by binding and inlining
component code at compile time that is bound at run time in OOP. This may, however,
also lead to limitations of the approach:

compile time fixation limits the approach to static configuration of product lines. In
domains, where the set of selected features can arbitrarily change at run time, ad-
ditional support has to be provided, e.g., by a dynamic aspect weaver. As most dy-
namic weaving approaches induce inevitable overhead [27], it is questionable if in
such cases AOP still outweighs the overhead of OOP. However, in most cases only
some features can be expected to change at run time. A tailorable low-cost weaving
infrastructure, which provides means to configure per-feature whether static or dy-
namic weaving should be used [45], may be a promising solution for such cases, as
this enables developers to optimize the trade-off between dynamism and resource
overhead at configuration time.

code bloating due to advice code inlining. This occurs if functionality given by advice
is invoked from (and therefore woven to) many different joinpoints. While this
situation has to be considered for highly crosscutting concerns such as tracing,
component composition usually takes place at few well-known joinpoints only. In
any case, however, the programmer is able to prevent this effect by simply moving
the advice body into a non-inlined function that is invoked from the advice code.

5.5 Applicability to Other AOP Approaches

Our results show, that in the case of C++ and AspectC++, using AOP instead of OOP
may lead to significant saving effects in terms of memory and hardware costs. This

250 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

gives rise to the question, whether similar results can be reached with other languages
and/or AOP approaches as well. This is clearly a huge field for further research and
cannot be answered in this paper. We think, however, that the following points are of
particular importance:

weaver run time support may lead to some unavoidable base overhead that limits the
reachable quantity of memory savings. This is clearly an issue for the domain of
embedded systems. Experiments conducted with AspectJ on Java2 Micro Edition,
for instance, have shown that the AspectJ run time induces an extra 35 KB overhead
[49]. AOP approaches that do not require run-time library support are probably
better suited for the goal of resource-thriftiness. Besides AspectC++, XWeaver [44]
and AspectC [12], for instance, may be promising candidates.

language capabilities of the host language have a high influence on the applicability
of the approach. As the resource savings are mainly caused by using compile time
instead of run-time concepts, the host language has to support such concepts.
On the one hand, it is probably difficult to get “rid of the OOP overhead” in
languages that have been particularly designed as object-oriented languages, such
as Java or C#. On the other hand, languages such as C may not be sufficiently
expressive with respect to (compile time) genericity to take full advantage of the
approach.

5.6 Design Issues

The actual design and implementation of the AO and OO versions have a signifi-
cant influence on the resulting memory and performance numbers. Both versions have
achieved the granularity, pluggability, and extensibility goals. One might, however,
question if especially the design of the OO version is optimal with respect to the econ-
omy goal as well. Theoretically, it might be possible to find a better OO implementation
that leads to lower memory demands.

As a matter of fact, it is impossible to proof that the design and implementation of
some software is optimal with respect to run-time resource requirements. The authors
have, however, profound experience in developing resource-minimal object-oriented
product lines [10, 11, 34]. There is, furthermore, quite some evidence that any OO
version would lead to higher memory requirements than the AO version: as pointed out
in the previous sections, run-time mechanisms have to be used with OO to reach the
required flexibility which, as described in Sects. 3.5 and 4, induce overhead. Given that
the OO version takes up to 138% more RAM and up to 91% more flash memory than
the C and AO versions; it is hard to imagine that these differences could be levelled by
a better OO implementation.

For the AO version the resource requirements are only minimally higher than for the
C version. Hence, it can already be considered as “nearly optimal”. In a recent study
on the eCos operating system product line [1], we could show that the C-mechanism to
reach configurability (conditional compilation), can be replaced by AOP concepts with-
out any extra run time and memory costs. In this study, we refactored several hundred
#ifdef-blocks caused by configurable features into aspects [33].

Lean and Efficient System Software Product Lines 251

6 Related Work

Several papers have been published that analyze and compare different implementation
techniques of product line variabilities [23, 36]. All authors come to the conclusion
that AOP is a very promising approach, although still not widely used in the industrial
practice [38]. In the middleware area several case studies showed that AOP allows soft-
ware developers to scale features and footprint by supporting the static configuration
of fine-grained configurable features [13, 50, 51]. All of these studies were conducted
with AspectJ. In one case the authors clearly expressed that AspectC++ would be more
appropriate for the embedded systems domain [28].

Other proposed implementation techniques were Generative Programming [16], the
application of frame processors such as XVCL [29] or Angie [19], and Feature-Oriented
Programming (FOP) [6]. All three techniques have in common with AOP that in a lay-
ered system design the higher-level layers can use special means to refine the behavior
and/or structure of the lower-level layers. This dependency alignment [14] is a key to
successful product line design. In comparison to frame processing and C++ template-
based generative programming [17], the main advantage of the AOP approach is its
obliviousness, i.e., refined layers do not have to be prepared for intervention by aspects.
In comparison with refinements in FOP, the advantage of AOP is quantification, i.e., a
single aspect can affect various different joinpoints. Of course, FOP is much more than
just the refinement mechanism. Therefore, the novel FeatureC++ language [5] is very
promising, as it combines AOP and FOP.

When using OOP, the discussed refinement can only be achieved with virtual func-
tions at the cost of dynamic binding. However, in many cases dynamic binding offers
more flexibility than it is actually needed. Much work has been conducted to reduce the
costs of virtual functions [3, 8, 20], but these optimizations are still not state of the art
in current C++ compilers.

Another alternative approach is to combine OOP with partial program evaluation
tools like Tempo [15] and C-Mix [4], especially as partial evaluation has succesfully
been applied in the context of system software [37]. However, the authors are not aware
of any tools or concept papers that cover the combination of these techniques with
OOP. Furthermore, the case studies on partial evaluation of system software focus on
performance improvements. Some of these techniques increase the code size by keeping
specialized and original code in memory at the same time or by applying dynamic
compilation [42].

In the systems software area configurable software is often component based. Popu-
lar examples are the OSKit [22, 39] and TinyOS [7]. In both cases the requirements on
performance and footprint can only be achieved with additional tool support. For exam-
ple, Knit can be regarded as a weaver for OSKit components [43]. TinyOS is written in
the NesC language [25]. Here, the compiler performs a whole program transformation
in order to optimize the system. In both cases the overhead, which is the result of the
component model, is later removed by an additional tool. With the AOP approach an
overhead is avoided from the beginning.

An interesting alternative to layered designs is Subject-Oriented Programming (SOP)
[26, 40]. This technique is one of the roots of AOP. It supports system composition from

252 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

slices instead of layers. In our embedded weather station case study, the sensors are in
fact slices. By using the introduction mechanism of AspectC++, SOP was simulated.

7 Summary and Conclusions

The development of fine-grained and resource-efficient system software product lines
requires means for separation of concerns that do not lead to an extra overhead in terms
of memory and performance. Especially in the important domain of small embedded
systems, where even a few additional bytes of code or data may lead to higher hardware
costs, the inherent overhead of OOP is not acceptable for most developers. For this
domain we propose AOP as an alternative.

In this paper, we compared an object-oriented with an aspect-oriented implemen-
tation of an configurable embedded software product line. We could show that the
aspect-oriented implementation induces significantly lower memory requirements than
the object-oriented implementation, while providing similar or even better qualities with
respect to separation of concerns. Although our results were produced with C++ and
AspectC++, similar effects should be achievable with any AOP approach that does not
require additional run-time support and performs inlining of advice code. Advice code
inlining also leads to an excellent performance. Our measurements have shown that
the performance of the AO version was identical with the performance of our C-based
reference implementation.

Overall, our results show that aspects provide very good separation of concerns in
conjuction with high resource efficiency. This makes AOP well suited for the develop-
ment of embedded system software product lines—where aspects beat objects.

Regarding future work, we will continue to evaluate costs and benefits of applying
AOP to the operating systems domain. We are furthermore working on a benchmark
suite that provides detailed results regarding the run time and memory costs of As-
pectC++ features.

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful comments.
We furthermore thank Danilo Beuche from pure::systems GmbH for leaving us the
weather station hardware. Finally, a big thankyou goes to the editors, especially Hans-
Arno Jacobsen, whose suggestions helped us a lot to improve the quality and com-
prehensibility of this paper. This work was partly supported by the German Research
Council (DFG) under grant no. SCHR 603/4 and SP 968/2-1.

References

[1] eCos homepage. http://ecos.sourceware.org/
[2] OSEK/VDX standard. http://www.osek-vdx.org/
[3] G. Aigner and U. Hölzle. Eliminating virtual function calls in C++ programs. Technical

Report TRCS95-22, Computer Science Department, University of California, Santa Bar-
bara, December 1995

Lean and Efficient System Software Product Lines 253

[4] L.O. Andersen. Program Analysis and Specialization for the C Programming Language.
PhD Thesis, DIKU, University of Copenhagen, May 1994. (DIKU report 94/19)

[5] S. Apel, T. Leich, M. Rosenmller, and G. Saake. FeatureC++: on the symbiosis of feature-
oriented and aspect-oriented programming. In: Proceedings of the 4th International Con-
ference on Generative Programming and Component Engineering (GPCE ’05), Tallinn,
Estonia, 2005

[6] D. Batory. Feature-oriented programming and the AHEAD tool suite. In: Proceedings of
the 26th International Conference on Software Engineering (ICSE ’04), IEEE Computer
Society, pp. 702–703, 2004

[7] U.C. Berkeley. TinyOS homepage. http://www.tinyos.net/
[8] D. Bernstein, Y. Fedorov, S. Porat, J. Rodrigue, and E. Yahav. Compiler optimization of

C++ virtual function calls. In: Proceedings of the 2nd USENIX Conference on Object-
Oriented Technologies and Systems (COOTS ’96), Toronto, Canada, 1996

[9] D. Beuche. Variant management with pure::variants. Technical report, pure-systems GmbH,
2003. http://www.pure-systems.com/

[10] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-Preikschat, O. Spinczyk, and
U. Spinczyk. The PURE family of object-oriented operating systems for deeply embedded
systems. In: Proceedings of the 2nd IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC ’99), St Malo, France, pp. 45–53, 1999

[11] D. Beuche, W. Schröder-Preikschat, O. Spinczyk, and U. Spinczyk. Streamlining
object-oriented software for deeply embedded applications. In: Proceedings of the 33rd
International Conference on Technology of Object-Oriented Languages and Systems
(TOOLS ’00), Mont Saint-Michel, France, pp. 33–44, 2000

[12] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn. Using AspectC to improve the modular-
ity of path-specific customization in operating system code. In: Proceedings of the 3rd Joint
European Software Engineering Conference and ACM Symposium on the Foundations of
Software Engineering (ESEC/FSE ’01), 2001

[13] A. Colyer, A. Clement, R. Bodkin, and J. Hugunin. Using AspectJ for component integra-
tion in middleware. In: Proceedings of the 18th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA ’03), ACM, New York,
pp. 339–344, 2003

[14] A. Colyer, A. Rashid, and G. Blair. On the separation of concerns in program families.
Technical Report COMP-001-2004, Lancaster University, 2004

[15] C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, and E.-N. Volanschi. Tempo:
specializing systems applications and beyond. ACM Computing Surveys, 30(3es), 1998

[16] K. Czarnecki and U.W. Eisenecker. Generative Programming. Methods, Tools and Appli-
cations. Addison-Wesley, Reading, 2000

[17] K. Czarnecki and U.W. Eisenecker. Synthesizing Objects. In: R. Guerraoui (ed.),
Proceedings of the 13th European Conference on Object-Oriented Programming
(ECOOP ’99), LNCS vol. 1628, Lisbon, Portugal, Springer, Berlin Heidelberg New York,
pp. 18–42, 1999

[18] J. Dean, C. Chambers, and D. Grove. Selective specialization for object-oriented languages.
In: Proceedings of PLDI ’95, La Jolla, CA, 1995

[19] Delta Software Technology GmbH. Angie – an introduction, 2005
[20] K. Driesen and U. Hölzle. The direct cost of virtual function calls in C++. In: Proceedings

of the 11th ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’96), 1996

[21] B. Dufour, C. Goard, L. Hendren, C. Verbrugge, O. de Moor, and G. Sittampalam.
Measuring the dynamic behaviour of AspectJ programs. In: Proceedings of the 19th
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA ’04), ACM, New York, pp. 150–169, 2004.

254 D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat

[22] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The flux OSKit: a subst-
rate for Kernel and language research. In: Proceedings of the 17th ACM Symposium on
Operating Systems Principles (SOSP ’97), ACM Operating Systems Review, ACM, New
York, pp. 38–51, 1997

[23] C. Gacek and M. Anastasopoules. Implementing product line variabilities. In: Proceedings
of 2001 Symposium on Software Reusability: Putting Software Reuse in Context, ACM,
New York, pp. 109–117, 2001

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, 1995

[25] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC language: a
holistic approach to networked embedded systems. In: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’03), ACM, San
Diego, New York, pp. 1–11, 2003

[26] W. Harrison and H. Ossher. Subject-oriented programming—a critique of pure objects.
In: Proceedings of the 8th ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’93), pp. 411–428, 1993

[27] M. Haupt and M. Mezini. Micro-measurements for dynamic aspect-oriented systems. In:
NetObjectDays (NODe ’04), Erfurt, Germany, LNCS vol. 3263, Springer, Berlin Heidelberg
New York, pp. 81–96, 2004

[28] F. Hunleth and R. Cytron. Footprint and feature management using aspect-oriented pro-
gramming techniques. In: Proceedings of the 2002 Joint Conference on Languages, Com-
pilers and Tools for Embedded Systems & Soft. and Compilers for Embedded Systems
(LCTES/SCOPES ’02), Berlin, Germany, ACM, New York, pp. 38–45, 2002

[29] S. Jarzabek and H. Zhang. XML-based method and tool for handling variant requirements
in domain model. In: Proceedings of the 5th IEEE International Symposium on Require-
ments Engineering (RE ’01), Toronto, Canada, IEEE Computer Society Press, pp. 116–123,
2001

[30] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Next century challenges: mobile networking for
”smart dust”. In: International Conference on Mobile Computing and Networking (MOBI-
COM ’99), pp. 271–278, 1999

[31] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G. Griswold. An overview
of AspectJ. In: J. Lindskov Knudsen (ed.), Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP ’01), LNCS vol. 2072, Springer, Berlin Heidelberg
New York, pp. 327–353, 2001

[32] D. Lohmann, G. Blaschke, and O. Spinczyk. Generic advice: on the combination of AOP
with generative programming in AspectC++. In: G. Karsai and E. Visser (ed.), Proceed-
ings of the 3rd International Conference on Generative Programming and Component En-
gineering (GPCE ’04), LNCS vol. 3286, Springer, Berlin Heidelberg New York, pp. 55–74,
2004

[33] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and W. Schröder-Preikschat. A quantita-
tive analysis of aspects in the eCos kernel. In: Proceedings of the EuroSys 2006 Conference
(EuroSys ’06), ACM, New York, pp. 191–204, 2006

[34] D. Lohmann, W. Schröder-Preikschat, and O. Spinczyk. On the design and development
of a customizable embedded operating system. In: Proceedings of the SRDS Workshop on
Dependable Embedded Systems (SRDS-DES ’04), IEEE Computer Society, pp. 1–6, 2004

[35] D. Lohmann and O. Spinczyk. On typesafe aspect implementations in C++. In:
F. Geschwind, U. Assmann, and O. Nierstrasz (eds.), Proceedings of Software Composi-
tion 2005 (SC ’05), Edinburgh, UK, LNCS vol. 3628, Springer, Berlin Heidelberg New
York, pp. 135–149, 2005

[36] M. Mezini and K. Ostermann. Variability management with feature-oriented programming
and aspects. In: Proceedings of ACM SIGSOFT ’04 / FSE-12, 2004

Lean and Efficient System Software Product Lines 255

[37] G. Muller, E.N. Volanschi, and R. Marlet. Scaling up partial evaluation for optimizing the
sun commercial rpc protocol. In: ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, Amsterdam, The Netherlands, ACM, New York,
pp. 116–125, 1997

[38] D. Muthig and T. Patzke. Generic implementation of product line components. In: NetOb-
jectDays (NODe ’02), Erfurt, Germany, LNCS vol. 2591, Springer, Berlin Heidelberg New
York, pp. 313–329, 2003

[39] University of Utah. OSKit homepage. http://www.cs.utah.edu/flux/oskit
[40] H. Ossher and P. Tarr. Using multidimensional separation of concerns to (re)shape evolving

software. Communications of the ACM, pp. 43–50, 2001
[41] D.L. Parnas. Some hypothesis about the uses hierarchy for operating systems. Technical

report, TH Darmstadt, Fachbereich Informatik, 1976
[42] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis kernel. Computing Systems, 1(1):

11–32, 1988
[43] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit: component composition for

systems software. In: Proceedings of the 4th Symposium on Operating Systems Design and
Implementation (OSDI ’00), San Diego, CA, USA, pp. 347–360, 2000 Usenix Association

[44] O. Rohlik, A. Pasetti, V. Cechticky, and I. Birrer. Implementing adaptability in embed-
ded software through aspect oriented programming. In: Proceedings of Mechatronics &
Robotics (MechRob ’04), Aachen, Germany, IEEE Computer Society Press, 2004

[45] W. Schröder-Preikschat, D. Lohmann, W. Gilani, F. Scheler, and O. Spinczyk. Static and
dynamic weaving in system software with AspectC++. In: Y. Coady, J. Gray, and R. Klef-
stad (eds.), Proceedings of the 39th Hawaii International Conference on System Sciences
(HICSS ’06) - Mini-Track on Adaptive and Evolvable Software Systems. IEEE Computer
Society, 2006

[46] O. Spinczyk, D. Lohmann, and M. Urban. Advances in AOP with AspectC++. In:
H. Fujita and M. Mejri (eds.), New Trends in Software Methodologies, Tools and Tech-
niques (SoMeT ’05), LNCS vol. 129, Frontiers in Artificial Intelligence and Applications,
Tokyo, Japan, IOS, pp. 33–53, 2005

[47] D. Tennenhouse. Proactive computing. Communications of the ACM, pp. 43–45, 2000
[48] M. Weiser. The computer for the 21st centrury. Scientific American, 265(3):94–104, 1991
[49] T. Young and G. Murphy. Using AspectJ to build a product line for mobile devices.

AOSD ’05 Demo, Chicago, Illinois, March 2005
[50] C. Zhang, D. Gao, and H.-A. Jacobsen. Generic middleware substrate through modelware.

In: Proceedings of the ACM/IFIP/USENIX 6th International Middleware Conference (Mid-
dleware ’05), Grenoble, France, ACM, New York, 2005

[51] C. Zhang and H.-A. Jacobsen. Refactoring middleware with aspects. IEEE Transactions
on Parallel and Distributed Systems, 14(11), 2003

	Introduction
	System Software Product Lines
	Objectives
	Structure of the Paper

	Scenario
	Overview
	Hardware Platform
	Configuration Process

	Implementation
	Implementation Requirements
	Implementation of the C Version
	Implementation of the OO Version
	Implementation of the AO Version
	Used AOP and OOP Idioms
	Implementation Summary

	Cost Analysis
	Measurement Methods
	Overall Scalability of the Product Line
	Memory Requirements in Detail
	Run-Time Requirements in Detail
	Cost Analysis Summary

	Discussion
	General Advantages of the Approach
	Compiler Issues
	Applicability to System Software
	Potential Disadvantages of the Approach
	Applicability to Other AOP Approaches
	Design Issues

	Related Work
	Summary and Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

