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Abstract

Non-linear kernel methods can be approximated by fast linear ones using suitable
explicit feature maps allowing their application to large scale problems. We investi-
gate how convolution kernels for structured data are composed from base kernels and
construct corresponding feature maps. On this basis we propose exact and approx-
imative feature maps for widely used graph kernels based on the kernel trick. We
analyze for which kernels and graph properties computation by explicit feature maps
is feasible and actually more efficient. In particular, we derive approximative, explicit
feature maps for state-of-the-art kernels supporting real-valued attributes including the
GraphHopper and graph invariant kernels. In extensive experiments we show that our
approaches often achieve a classification accuracy close to the exact methods based
on the kernel trick, but require only a fraction of their running time. Moreover, we pro-
pose and analyze algorithms for computing random walk, shortest-path and subgraph
matching kernels by explicit and implicit feature maps. Our theoretical results are
confirmed experimentally by observing a phase transition when comparing running
time with respect to label diversity, walk lengths and subgraph size, respectively.

Keywords Graph kernels - Feature maps - Random walk kernel - Structured data -
Supervised learning

Responsible editor: Hanghang Tong.

A preliminary version of this paper appeared in the proceedings of the IEEE International Conference on
Data Mining (ICDM) in 2014 (Kriege et al. 2014).

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative
Research Center SFB 876 “Providing Information by Resource-Constrained Data Analysis”, project A6
“Resource-efficient Graph Mining”.

Extended author information available on the last page of the article

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-019-00652-0&domain=pdf

1506 N. M. Kriege et al.

1 Introduction

Analyzing complex data is becoming more and more important. In numerous appli-
cation domains, e.g., chem- and bioinformatics, neuroscience, or image and social
network analysis, the data is structured and hence can naturally be represented as
graphs. To achieve successful learning we need to exploit the rich information inher-
ent in the graph structure and the annotations of vertices and edges. A popular approach
to mining structured data is to design graph kernels measuring the similarity between
pairs of graphs. The graph kernel can then be plugged into a kernel machine, such as
support vector machine or Gaussian process, for efficient learning and prediction.

The kernel-based approach to predictive graph mining requires a positive semidef-
inite (p.s.d.) kernel function between graphs. Graphs, composed of labeled vertices
and edges, possibly enriched with continuous attributes, however, are not fixed-length
vectors but rather complicated data structures, and thus standard kernels cannot be
used. Instead, the general strategy to design graph kernels is to decompose graphs into
small substructures among which kernels are defined following the concept of convo-
lution kernels due to Haussler (1999). The graph kernel itself is then a combination of
the kernels between the possibly overlapping parts. Hence the various graph kernels
proposed in the literature mainly differ in the way the parts are constructed and in
the similarity measure used to compare them. Moreover, existing graph kernels differ
in their ability to exploit annotations, which may be categorical labels or real-valued
attributes on the vertices and edges.

We recall basic facts on kernels, which have decisive implications on computational
aspects. A kernel on anon-empty set X is a positive semidefinite functionk: X x X' —
R. Equivalently, a function & is a kernel if there is a feature map ¢: X — H to a
Hilbert space H with inner product (-, -), such that k(x, y) = (¢ (x), ¢(y)) for all x
and y in X. This equivalence yields two algorithmic strategies to compute kernels on
graphs:

(i) One way is functional computation, e.g., from closed-form expressions. In this case
the feature map is not necessarily known and the feature space may be of infinite
dimension. Therefore, we refer to this approach based on the famous kernel trick
as implicit computation.

(ii) The other strategy is to compute the feature map ¢ (G) for each graph G explicitly
to obtain the kernel values from the dot product between pairs of feature vectors.
These feature vectors commonly count how often certain substructures occur in a
graph.

The used strategy has a crucial effect on the running time of the kernel method at the
higher level. Kernel methods supporting implicit kernel computation are often slower
than linear ones based on explicit feature maps assuming that the feature vectors are of
amanageable size. The running time for training support vector machines, for example,
is linear in the training set size when assuming that the feature vectors have a constant
number of non-zero components (Joachims 2006). For this reason, approximative
explicit feature maps of various popular kernels for vectorial data have been studied
extensively (Rahimi and Recht 2008; Vedaldi and Zisserman 2012). This, however,
is not the case for graph kernels, which are typically proposed using one method of
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computation, either implicit or explicit. Graph kernels using explicit feature maps
essentially transform graphs into vectorial data in a preprocessing step. These kernels
are scalable, but are often restricted to graphs with discrete labels. Unique advantages
of the implicit computation are that (i) kernels for composed objects can be obtained by
combining established kernels on their parts exploiting well-known closure properties
of kernels; (ii) the number of possible features may be high—in theory infinite—while
the function remains polynomial-time computable.

Previously proposed graph kernels that are computed implicitly typically support

specifying arbitrary kernels for vertex annotations, but do not scale to large graphs
and data sets. Even when approximative explicit feature maps of the kernel on vertex
annotations are known, it is not clear how to obtain (approximative) feature maps for
the graph kernel.
Our contribution We study under which conditions the computation of an explicit
mapping from graphs to a finite-dimensional feature spaces is feasible and efficient.
To achieve our goal, we discuss feature maps corresponding to closure properties of
kernels and general convolution kernels with a focus on the size and sparsity of their
feature vectors. Our theoretical analysis identifies a trade-off between running time
and flexibility.

Building on the systematic construction of feature maps we obtain new algorithms
for explicit graph kernel computation, which allow to incorporate (approximative)
explicit feature maps of kernels on vertex annotations. Thereby known approximation
results for kernels on continuous data are lifted to kernels for graphs with continuous
annotations. More precisely, we introduce the class of weighted vertex kernels and
show that it generalizes state-of-the-art kernels for graphs with continuous attributes,
namely the GraphHopper kernel (Feragen et al. 2013) and an instance of the graph
invariant kernels (Orsini et al. 2015). We derive explicit feature maps with approxima-
tion guarantees based on approximative feature maps of the base kernels to compare
annotations. Then, we propose and analyze algorithms for computing fixed length
walk kernels by explicit and implicit feature maps. We investigate shortest-path ker-
nels (Borgwardt and Kriegel 2005) and subgraph matching kernels (Kriege and Mutzel
2012) and put the related work into the context of our systematic study. Given this,
we are finally able to experimentally compare the running times of both computa-
tion strategies systematically with respect to the label diversity, data set size, and
substructure size, i.e., walk length and subgraph size. As it turns out, there exists
a computational phase transition for walk and subgraph kernels. Our experimental
results for weighted vertex kernels show that their computation by explicit feature
maps is feasible and provides a viable alternative even when comparing graphs with
continuous attributes.

Extension of the conference paper The present paper is a significant extension of a
previously published conference paper (Kriege et al. 2014). In the following we list
the main contributions that were not included in the conference version.

— Feature maps of composed kernels We review closure properties of kernels, the
corresponding feature maps and the size and sparsity of the feature vectors. Based
on this, we obtain explicit feature maps for convolution kernels with arbitrary base
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kernels. This generalizes the result of the conference paper, where binary base
kernel were considered.

— Weighted vertex kernels We introduce weighted vertex kernels for attributed
graphs, which generalize the GraphHopper kernel (Feragen et al. 2013) and graph
invariant kernels (Orsini et al. 2015). Weighted vertex kernels were not considered
in the conference paper.

— Construction of explicit feature maps We derive explicit feature maps for weighted
vertex kernels and the shortest-path kernel (Borgwardt and Kriegel 2005) support-
ing base kernels with explicit feature maps for the comparison of attributes. We
prove approximation guarantees in case of approximative feature maps of base
kernels. This contribution is not contained in the conference paper, where only
the explicit computation of the shortest-path kernel for graphs with discrete labels
was discussed.

— Fixed length walk kernels We generalize the explicit computation scheme to sup-
portarbitrary vertex and edge kernels with explicit feature maps for the comparison
of attributes. In the conference paper only binary kernels were considered. More-
over, we have significantly expanded the section on walk kernels by spelling out all
proofs, adding illustrative figures and clarifying the relation to the k-step random
walk kernel as defined by Sugiyama and Borgwardt (2015).

— Experimental evaluation We largely extended our evaluation, which now includes
experiments for the novel computation schemes of graph kernels as well as a
comparison between a graphlet kernel and the subgraph matching kernel (Kriege
and Mutzel 2012).

Outline In Sect. 2 we discuss the related work and proceed by fixing the notation in
Sect. 3. In Sect. 4 we review closure properties of kernels and the corresponding feature
maps. Moreover, we derive feature maps for general convolution kernels. In Sect. 5 we
propose algorithms for computing graph kernels and systematically construct explicit
feature maps building on these results. We introduce weighted vertex kernels and
derive (approximative) explicit feature maps. We discuss the fixed length walk kernel
and propose algorithms for explicit and implicit computation. Moreover, we discuss
the shortest-path graph kernel as well as the graphlet and subgraph matching kernel
regarding explicit and implicit computation. Section 6 presents the results of our
experimental evaluation.

2 Related work

In the following we review existing kernels based on explicit or implicit computation
and discuss embedding techniques for attributed graphs. We focus on the approaches
most relevant for our work and refer the reader to the survey articles (Vishwanathan
et al. 2010; Ghosh et al. 2018; Zhang et al. 2018b; Kriege 2019) for a more compre-
hensive overview.
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2.1 Graph kernels

Most graph kernels decompose graphs into substructures and count their occurrences
to obtain a feature vector. The kernel function then counts the co-occurrences of
features in two graphs by taking the dot product between their feature vectors. The
graphlet kernel, for example, counts induced subgraphs of size k € {3, 4, 5} of unla-
beled graphs according to K(G, H) = fg;— fn, where fg and fy are the subgraph
feature vectors of G and H, respectively (Shervashidze et al. 2009). The cyclic pat-
tern kernel is based on cycles and trees and maps the graphs to substructure indicator
features, which are independent of the substructure frequency (Horvath et al. 2004).
The Weisfeiler-Lehman subtree kernel counts label-based subtree patterns accord-
ing to Ka(G, H) = Y| K(G;, Hy), where K (G;, Hy) = (1)) and £ is a
feature vector counting subtree-patterns in G of depth i (Shervashidze et al. 2011;
Shervashidze and Borgwardt (2009)). A subtree-pattern is a tree rooted at a particular
vertex where each level contains the neighbors of its parent vertex; the same vertices
can appear repeatedly. Other graph kernels on subtree-patterns have been proposed
in the literature, e.g., Ramon and Gértner (2003), Harchaoui and Bach (2007), Bai
et al. (2015) and Hido and Kashima (2009). In a similar spirit, the propagation kernel
iteratively counts similar label or attribute distributions to create an explicit feature
map for efficient kernel computation (Neumann et al. 2016). Martino et al. (2012) pro-
posed to decompose graphs into multisets of ordered directed acyclic graphs, which
are compared by extended tree kernels. While convolution kernels decompose graphs
into their parts and sum over all pairs, assignment kernels are obtained from an optimal
bijection between parts (Frohlich et al. 2005). Since this does not lead to valid kernels
in general (Vert 2008; Vishwanathan et al. 2010), various approaches to overcome
this obstacle have been developed (Johansson and Dubhashi 2015; Schiavinato et al.
2015; Kriege et al. 2016; Nikolentzos et al. 2017). Several kernels have been proposed
with the goal to take graph structure at different scales into account, e.g., using k-core
decomposition (Nikolentzos et al. 2018) or spectral properties (Kondor and Pan 2016).
Yanardag and Vishwanathan (2015) combine neural techniques from language model-
ing with state-of-the-art graph kernels in order to incorporate similarities between the
individual substructures. Such similarities were specifically designed for the substru-
tures used by the graphlet and the Weisfeiler-Lehman subtree kernel, among others.
Narayanan et al. (2016) discuss several problems of the proposed approach to obtain
substructure similarities and introduce subgraph2vec to overcome these issues.
Many real-world graphs have continuous attributes such as real-valued vectors
attached to their vertices and edges. For example, the vertices of a molecular graph
may be annotated by the physical and chemical properties of the atoms they represent.
The kernels based on counting co-occurrences described above, however, consider two
substructures as identical if they match exactly, structure-wise as well as attribute-wise,
and as completely different otherwise. For attributed graphs it is desirable to compare
annotations by more complex similarity measures such as the Gaussian RBF kernel.
The kernels discussed in the following allow user-defined kernels for the comparison
of vertex and edge attributes. Moreover, they compare graphs in a way that takes the

@ Springer



1510 N. M. Kriege et al.

interplay between structure and attributes into account and are therefore suitable for
graphs with continuous attributes.

Random walk kernels add up a score for all pairs of walks that two graphs have in
common, whereas vertex and edge attributes encountered on walks can be compared by
user-specified kernels. For random walk kernels implicit computation schemes based
on product graphs have been proposed. The product graph G x has a vertex for each
pair of vertices in the original graphs. Two vertices in the product graph are neighbors
if the corresponding vertices in the original graphs are both neighbors as well. Product
graphs have some nice properties making them suitable for the computation of graph
kernels. First, the adjacency matrix A, of a product graph is the Kronecker product
of the adjacency matrices A and A’ of the original graphs, i.e., Ax = A ® A’, same
holds for the weight matrix Wy when employing an edge kernel. Further, there is
a one-to-one correspondence between walks on the product graph and simultaneous
walks on the original graphs (Girtner et al. 2003). The random walk kernel introduced
by Vishwanathan et al. (2010) is now given by

o0
K(G, H)=) g Wipx. ey
=0

where py and g are starting and stopping probability distributions and ; coefficients
such that the sum converges. Several variations of the random walk kernel have been
introduced in the literature. The geometric random walk kernel originally introduced
by Giértner et al. (2003) counts walks with the same sequence of discrete labels and is a
predecessor of the general formulation presented above. The description of the random
walk kernel by Kashima et al. (2003) is motivated by a probabilistic view on kernels
and based on the idea of so-called marginalized kernels. The method was extended to
avoid tottering and the efficiency was improved by label refinement (Mahé et al. 2004).
Several methods for computing Eq. (1) were proposed by Vishwanathan et al. (2010)
achieving different running times depending on a parameter k, which is the number of
fixed-point iterations, power iterations and the effective rank of W, , respectively. The
running times to compare graphs with n vertices also depend on the edge labels of the
input graphs and the desired edge kernel. For unlabeled graphs the running time O (n>)
is achieved and O(dkn?) for labeled graphs, where d is the size of the label alphabet.
The same running time is obtained for edge kernels with a d-dimensional feature space,
while O(kn*) time is required in the infinite case. For sparse graphs O (kn?) is obtained
in all cases. Further improvements of the running time were subsequently obtained
by non-exact algorithms based on low rank approximations (Kang et al. 2012). These
random walk kernels take all walks without a bound on length into account. However,
in several applications it has been reported that only walks up to a certain length
have been considered, e.g., for the prediction of protein functions (Borgwardt et al.
2005) or image classification (Harchaoui and Bach 2007). This might suggest that
it is not necessary or even not beneficial to consider the infinite number of possible
walks to obtain a satisfying prediction accuracy. Moreover, the phenomenon of halting
in random walk kernels has been studied recently (Sugiyama and Borgwardt 2015),
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which refers to the fact that long walks are down-weighted such that the kernel is in
fact dominated by walks of length 1.

Another substructure used to measure the similarity among graphs are short-
est paths. Borgwardt and Kriegel (2005) proposed the shortest-path kernel, which
compares two graphs based on vertex pairs with similar shortest-path lengths. The
GraphHopper kernel compares the vertices encountered while hopping along shortest
paths by a user-specified kernel (Feragen et al. 2013). Similar to the graphlet kernel,
the subgraph matching kernel compares subgraphs of small size, but allows to score
mappings between them according to vertex and edge kernels (Kriege and Mutzel
2012). Further kernels designed specifically for graphs with continuous attributes
exist (Orsini et al. 2015; Su et al. 2016; Martino et al. 2018).

2.2 Embedding techniques for attributed graphs

Kernels for attributed graphs often allow to specify arbitrary kernels for comparing
attributes and are computed using the kernel trick without generating feature vec-
tors. Moreover, several approaches for computing vector representations for attributed
graphs have been proposed. These, however, do not allow specifying a function
for comparing attributes. The similarity measure that is implicitly used to compare
attributes is typically not known. This is the case for recent deep learning approaches
as well as for some kernels proposed for attributed graphs.

Deep learning on graphs Recently, a number of approaches to graph classification
based upon neural networks have been proposed. Here a vectorial representation for
each vertex is learned iteratively from the vertex annotations of its neighbors using
a parameterized (differentiable) neighborhood aggregation function. Eventually, the
vector representations for the individual vertices are combined to obtain a vector
representation for the graph, e.g., by summation.

The parameters of the aggregation function are learned together with the parameters
of the classification or regression algorithm, e.g., a neural network. More refined
approaches use differential pooling operators based on sorting (Zhang et al. 2018a)
and soft assignments (Ying et al. 2018b). Most of these neural approaches fit into the
framework proposed by Gilmer et al. (2017). Notable instances of this model include
neural fingerprints (Duvenaud et al. 2015), GraphSAGE (Hamilton et al. 2017a), and
the spectral approaches proposed by Bruna et al. (2014), Defferrard et al. (2016) and
Kipf and Welling (2017)—all of which descend from early work, see, e.g., Merkwirth
and Lengauer (2005) and Scarselli et al. (2009).

These methods show promising results on several graph classification benchmarks,
see, e.g., Ying et al. (2018b), as well as in applications such as protein—protein inter-
action prediction (Fout et al. 2017), recommender systems (Ying et al. 2018a), and the
analysis of quantum interactions in molecules (Schiitt et al. 2017). A survey of recent
advancements can be found in Hamilton et al. (2017b). With these approaches, the
vertex attributes are aggregated for each graph and not directly compared between the
graphs. Therefore, it is not obvious how the similarity of vertex attributes is measured.
Explicit feature maps of kernels for attributed graphs Graph kernels supporting com-
plex annotations typically use implicit computation schemes and do not scale well.
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Whereas graphs with discrete labels are efficiently compared by graph kernels based on
explicit feature maps. Kernels limited to graphs with categorical labels can be applied
to attributed graphs by discretization of the continuous attributes, see, e.g., Neumann
etal. (2016). Morris et al. (2016) proposed the hash graph kernel framework to obtain
efficient kernels for graphs with continuous labels from those proposed for discrete
ones. The idea is to iteratively turn continuous attributes into discrete labels using
randomized hash functions. A drawback of the approach is that so-called independent
k-hash families must be known to guarantee that the approach approximates attribute
comparisons by the kernel k. In practice locality-sensitive hashing is used, which does
not provide this guarantee, but still achieves promising results. To the best of our
knowledge no results on explicit feature maps of kernels for graphs with continuous
attributes that are compared by a well-defined similarity measure such as the Gaussian
RBF kernel are known.

However, explicit feature maps of kernels for vectorial data have been studied exten-
sively. Starting with the seminal work by Rahimi and Recht (2008), explicit feature
maps of various popular kernels have been proposed, cf. (Vedaldi and Zisserman 2012;
Kar and Karnick 2012; Pham and Pagh 2013, and references therein). In this paper, we
build on this line of work to obtain kernels for graphs, where individual vertices and
edges are annotated by vectorial data. In contrast to the hash graph kernel framework
our goal is to lift the known approximation results for kernels on vectorial data to
kernels for graphs annotated with vectorial data.

3 Preliminaries

An (undirected) graph G is a pair (V, E) with a finite set of vertices V and a set of
edges E C {{u, v} € V | u # v}. We denote the set of vertices and the set of edges of
G by V(G) and E(G), respectively. For ease of notation we denote the edge {, v} in
E(G) by uv or vu and the set of all graphs by G. A graph G’ = (V’, E') is a subgraph
ofagraph G = (V, E)if V' C V and E’ C E. The subgraph G’ is said to be induced
if ' ={uv € E | u,v € V'} and we write G' € G. We denote the neighborhood of
avertex vin V(G) by N(v) ={u € V(G) | vu € E(G)}.

A labeled graph is a graph G endowed with an label function t: V(G) — X,
where X is a finite alphabet. We say that 7(v) is the label of v for v in V(G). An
attributed graph is a graph G endowed with a function 7: V(G) — R?, d € N*, and
we say that t(v) is the attribute of v. We denote the base kernel for comparing vertex
labels and attributes by ky and, for short, write ky (u, v) instead of ky (t(u), t(v)).
The above definitions directly extend to graphs, where edges have labels or attributes
and we denote the base kernel by kg. We refer to ky and kg as vertex kernel and edge
kernel, respectively, and assume both to take non-negative values only.

Let Ty be the running time for evaluating a kernel for a pair of graphs, Ty for
computing a feature vector for a single graph and Tgo; for computing the dot product
between two feature vectors. Computing an n x n matrix with all pairwise kernel
values for n graphs requires (i) time O(nTy) using implicit feature maps, and (ii)
time O(nTy + n’Tyo) using explicit feature maps. Clearly, explicit computation can
only be competitive with implicit computation, when the time Tgo is smaller than
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Tk. In this case, however, even a time-consuming feature mapping Ty pays off with
increasing data set size. The running time T4, depends on the data structure used
to store feature vectors. Since feature vectors for graph kernels often contain many
components that are zero, we consider sparse data structures, which expose running
times depending on the number of non-zero components instead of the actual number
of all components. For a vector v in R?, we denote by nz(v) the set of indices of
the non-zero components of v and let nnz(v) = |nz(v)| the number of non-zero
components. Using hash tables the dot product between @ and @; can be realized in
time Tgor = O(min{nnz(®), nnz(P,)}) in the average case.

4 Basic kernels, composed kernels and their feature maps

Graph kernels, in particular those supporting user-specified kernels for annotations,
typically employ closure properties. This allows to decompose graphs into parts that
are eventually the annotated vertices and edges. The graph kernel then is composed
of base kernels applied to the annotations and annotated substructures, respectively.
We first consider the explicit feature maps of basic kernels and then review closure
properties of kernels and discuss how to obtain their explicit feature maps. The results
are summarized in Table 1. This forms the basis for the systematic construction of
explicit feature maps of graph kernels according to their composition of base kernels
later in Sect. 5.

Some of the basic results on the construction of feature maps and their detailed
proofs can be found in the text book by Shawe-Taylor and Cristianini (2004). Going
beyond that, we discuss the sparsity of the obtained feature vectors in detail. This has
an essential impact on the efficiency in practice, when sparse data structures are used
and a large number of the components of a feature vector is zero. Indeed the running
times we observed experimentally in Sect. 6 can only be explained taking the sparsity
into account.

4.1 Dirac and binary kernels

We discuss feature maps for basic kernels often used for the construction of kernels
on structured objects. The Dirac kernel k5 on & is defined by ks(x, y) = 1,ifx =y

Table 1 Composed kernels, their feature map, dimension and sparsity

Kernel Feature map Dimension Sparsity

k¥ (x, y) = ak(x,y) % (x) = Jag(x) d nnz(¢ (x))
Kooy = 22 ki () $rO=@Liei  Tdi 12 nnz(; (x)
ke y) =12 ki y) =L ¢®  TILd [T nnz(¢; (x))
XX =Y ex Yy k. y) XX =Y, cx o) d [Uxex nz(@ ()|
We assume k = ki, ..., kp to be kernels with feature maps ¢ = ¢y, ..., ¢p of dimensiond =dy,...,dp
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and 0 otherwise. For X’ a finite set, it is well-known that ¢: X — {0, 1}*! with
components indexed by i € X and defined as ¢ (x); = 1 if i = x, and 0O otherwise, is
a feature map of the Dirac kernel.

The requirement that two objects are equal is often too strict. When considering two
subgraphs, for example, the kernel should take the value 1 if the graphs are isomorphic
and O otherwise. Likewise, two vertex sequences corresponding to walks in graphs
should be regarded as identical if their vertices have the same labels. We discuss this
more general concept of kernels and their properties in the following. We say a kernel
k on X is binary if k(x, y) is either O or 1 for all x, y € X'. Given a binary kernel, we
refer to

~M={y) € X X X k(x, y) =1}

as the relation on X induced by k. Next we will establish several properties of this
relation, which will turn out to be useful for the construction of a feature map.

Lemma 1 Let k be a binary kernel on X, then x ~p y = x ~ x holds for all
x,yeX.

Proof Assume there are x, y € X’ such that x ~; x and x ~ y. By the definition of
~ we obtain k(x, x) = 0 and k(x, y) = 1. The symmetric kernel matrix obtained by
k for X = {x, y} thus is either ((1) (1)) or ((1) } ) where we assume that the first row and
column is associated with x. Both matrices are not p.s.d. and, thus, k is not a kernel
contradicting the assumption. O

Lemma 2 Let k be a binary kernel on X, then ~y is a partial equivalence relation
meaning that the relation ~y, is (1) symmetric, and (ii) transitive.

Proof Property (i) follows from the fact that k must be symmetric according to
definition. Assume property (ii) does not hold. Then there are x, y,z € X with
X ~r YAy ~ zand x ~ z. Since x # z must hold according to Lemma 1
we can conclude that X = {x, y, z} are pairwise distinct. We consider a kernel
matrix K obtained by k for X and assume that the first, second and third row as
well as column is associated with x, y and z, respectively. There must be entries
k12 = ko1 = k3 = k3o = 1 and ky3 = k31 = 0. According to Lemma 1 the entries of
the main diagonal k11 = ky» = k33 = 1 follow. Consider the coefficient vector ¢ with
c1 =c¢3 = land cp = —1, we obtain ¢"Ke = —1. Hence, K is not p-s.d. and k is not
a kernel contradicting the assumption. O

We use these results to construct a feature map for a binary kernel. We restrict our
consideration to the set Xef = {x € X | x ~¢ x}, on which ~ is an equivalence
relation. The quotient set Qy = Xper/~ is the set of equivalence classes induced by
~. Let [x]x denote the equivalence class of x € Xer under the relation ~. Let ks be
the Dirac kernel on the equivalence classes Qy, then k(x, y) = ks([x]k, [y]x) and we
obtain the following result.

Proposition 1 Let k be a binary kernel with Qr = {Q1,..., Qq}, then ¢p: X —
(0, 1}¢ with ¢ (x); = 1 if Qi = [x1x, and O otherwise, is a feature map of k.
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4.2 Closure properties

For a kernel k on a non-empty set X’ the function k% (x, y) = ak(x, y) with @ in R>¢
is again a kernel on X'. Let ¢ be a feature map of k, then ¢* (x) = /a¢p (x) is a feature
map of k. For addition and multiplication, we get the following result.

Proposition 2 (Shawe-Taylor and Cristianini 2004, pp. 75sqq.)
Letky, ..., kp for D > 0 be kernels on X with feature maps ¢1, . .., ¢p of dimen-
siondy, ..., dp, respectively. Then

D D
K y) =) kit y) and k(e y) =] JkiCx, )
i=1

i=1

are again kernels on X. Moreover,

D D
¢t () =P eix) and ¢*(x) = Q) ¢i(x)
i=1

i=1

are feature maps for kT and k® of dimension Zg 1 di and ]_[l-'il d;, respectively. Here
@ denotes the concatenation of vectors and Q the Kronecker product.

Remark 1 In case of k; = kp = --- = kp, we have k*(x,y) = Dki(x,y) and a
di-dimensional feature map can be obtained. For k® we have ki (x, y)D , which yet
does not allow for a feature space of dimension smaller than dlD in general.

We state an immediate consequence of Proposition 2 regarding the sparsity of the
obtained feature vectors explicitly.

Corollary 1 Let ki, ..., kp and ¢y, ..., ¢p be defined as above, then

D D
nnz(¢*(x)) = Y nnz(¢i(x)) and nnz(¢®(x)) = [ [ nnz(¢i (x)).

i=1 i=1
4.3 Kernels on sets

In the following we derive an explicit mapping for kernels on finite sets. This result
will be needed in the succeeding section for constructing an explicit feature map for
the R-convolution kernel. Let x be a base kernel on a set U, and let X and Y be
finite subsets of U. Then the cross product kernel or derived subset kernel on P(U)
is defined as

KX, Y) =) kel y). )

xeY yeY
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Let ¢ be a feature map of «, then the function

¢ (X) =) o) 3)

xeX

is afeature map of the cross product kernel (Shawe-Taylor and Cristianini 2004, Propo-
sition 9.42). In particular, the feature space of the cross product kernel corresponds
to the feature space of the base kernel; both have the same dimension. For k = ks
the Dirac kernel ¢>(X) maps the set X to its characteristic vector, which has |U|
components and | X| non-zero elements. When « is a binary kernel as discussed in
Sect. 4 the number of components reduces to the number of equivalence classes of
~ and the number of non-zero elements becomes the number of cells in the quotient
set X /~. In general, we obtain the following result as an immediate consequence of
Eq. (3).

Corollary 2 Let ¢ be the feature map of the cross product kernel and ¢ the feature
map of its base kernel, then

nnz(¢™ (X)) =

U nz(¢(x))‘ :

xeX

A crucial observation is that the number of non-zero components of a feature vector
depends on both, the cardinality and structure of the set X and the feature map ¢ acting
on the elements of X. It is as large as possible when each element of X is mapped by
¢ to a feature vector with distinct non-zero components.

4.4 Convolution kernels

Haussler (1999) proposed R-convolution kernels as a generic framework to define
kernels between composite objects. In the following we derive feature maps for such
kernels by using the basic closure properties introduced in the previous sections.
Thereby, we generalize the result presented in (Kriege et al. 2014).

Definition 1 Suppose x € R = R X --- X R, are the parts of X € X according to
some decomposition. Let R € X x R be a relation such that (X, x) € R if and only
if X can be decomposed into the parts x. Let R(X) = {x | (X, x) € R} and assume
R(X) is finite for all X € X. The R-convolution kernel is

PoGyy= Y00 Y [ it v, )

XeR(X) yeR(Y) i=1

K (x,y)
where «; is a kernel on R; for alli € {1, ..., n}.
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Assume that we have explicit feature maps for the kernels «;. We first note that a
feature map for « can be obtained from the feature maps for «; by Proposition 2.! In
fact, Eq. (4) for arbitrary n can be obtained from the case n = 1 for an appropriate
choice of R and k; as noted by Shin and Kuboyama (2010). If we assume R =
R1 = U, the R-convolution kernel boils down to the crossproduct kernel and we have
k*(X,Y) = k*(R(X), R(Y)), where both employ the same base kernel . We use
this approach to develop explicit mapping schemes for graph kernels in the following.
Let ¢ be a feature map for «k of dimension d, then from Eq. (3), we obtain an explicit
mapping of dimension d for the R-convolution kernel according to

P(X)= Y ¢, )

xeR(X)

As discussed in Sect. 4.3 the sparsity of ¢*(X) simultaneous depends on the number
of parts and their relation in the feature space of «.

Kriege etal. (2014) considered the special case that « is a binary kernel, cf. Sect. 4.1.
From Proposition 1 and Eq. (5) we directly obtain their result as special case.

Corollary 3 (Kriege et al. (2014), Theorem 3) Let k* be an R-convolution kernel with
binary kernel k and Q, = {Q1, ..., Qa}, then ¢p*: X — N? with ¢ (x); = |Q;i N X|
is a feature map of k*.

5 Computing graph kernels by explicit and implicit feature maps

Building on the systematic construction of feature maps of kernels, we discuss explicit
and implicit computation schemes of graph kernels. We first introduce weighted ver-
tex kernels. This family of kernels generalizes the GraphHopper kernel (Feragen et al.
2013) and graph invariant kernels (Orsini et al. 2015) for attributed graphs, which
were recently proposed with an implicit method of computation. We derive (approxi-
mative) explicit feature maps for weighted vertex kernels. Then, we develop explicit
and implicit methods of computation for fixed length walk kernels, which both exploit
sparsity for efficient computation. Finally, we discuss shortest-path and subgraph ker-
nels for which both computation schemes have been considered previously and put
them in the context of our systematic study. We empirically study both computation
schemes for graph kernels confirming our theoretical results experimentally in Sect. 6.

5.1 Weighted vertex kernels

Kernels suitable for attributed graphs typically use user-defined kernels for the com-
parison of vertex and edge annotations such as real-valued vectors. The graph kernel
is then obtained by combining these kernels according to closure properties. Recently
proposed kernels for attributed graphs such as GraphHopper (Feragen et al. 2013) and
graph invariant kernels (Orsini et al. 2015) use separate kernel functions for the graph

I Note that we may consider every kernel k; on R; as kernel Kl-/ on R by defining Kl-/ (x,y) = ki (xj, yi)-
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structure and vertex annotations. They can be expressed as

KM(G. Hy= Y > kw,v) kv, v), (6)

veV(G)v'eV(H)

where ky is a user-specified kernel comparing vertex attributes and ky is a kernel that
determines a weight for a vertex pair based on the individual graph structures. Hence,
in the following we refer to Eq. (6) as weighted vertex kernel. Kernels belonging to this
family are easily identifiable as instances of R-convolution kernels, cf. Definition 1.

5.1.1 Weight kernels

We discuss two kernels for attributed graphs, which have been proposed recently and
can bee seen as instances of weighted vertex kernels.

Graph invariant kernels One approach to obtain weights for pairs of vertices is
to compare their neighborhood by the classical Weisfeiler-Lehman label refine-
ment (Shervashidze et al. 2011; Orsini et al. 2015). For a parameter /# and a graph
G with uniform initial labels 7, a sequence (ty, ..., ;) of refined labels referred to
as colors is computed, where 7; is obtained from 7;_; by the following procedure.
Sort the multiset of colors {{r;_1(#) | vu € E(G)}} for every vertex v to obtain a
unique sequence of colors and add t;_1(v) as first element. Assign a new color 7; (v)
to every vertex v by employing an injective mapping from color sequences to new col-
ors. A reasonable implementation of ky motivated along the lines of graph invariant
kernels (Orsini et al. 2015) is

h
kw (v, v') = Zka(fi(v), 7 (v), (N

i=0

where 7; (v) denotes the discrete label of the vertex v after the ith iteration of Weisfeiler-
Lehman label refinement of the underlying unlabeled graph. Intuitively, this kernel
reflects to what extent the two vertices have a structurally similar neighborhood.
GraphHopper kernel Another graph kernel, which fits into the framework of weighted
vertex kernels, is the GraphHopper kernel (Feragen et al. 2013) with

kw (v, ) = (M(v), M) F . ®)

Here M(v) and M(v') are § x § matrices, where the entry M(v);; for vin V(G) counts
the number of times the vertex v appears as the ith vertex on a shortest path of discrete
length j in G, where § denotes the maximum diameter over all graphs, and (-, -) r is
the Frobenius inner product.
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5.1.2 Vertex kernels

For graphs with multi-dimensional real-valued vertex attributes in R¢ one could set
ky to the Gaussian RBF kernel krpp or the dimension-wise product of the hat kernel
ka, respectively, i.e.,

— v]2 d .
krBF(x, y) = exp (-%) and ka(x,y) = Emax {0, - ol 3 Jil } .

(C))

Here, o and § are parameters controlling the decrease of the kernel value with increas-
ing discrepancy between the two input data points.

5.1.3 Computing explicit feature maps

In the following we derive an explicit mapping for weighted vertex kernels. Notice
that Eq. (6) is an instance of Definition 1. Hence, by Proposition 2 and Eq. (5), we
obtain an explicit mapping ¢V of weighted vertex kernels.

Proposition 3 Let KWV be a weighted vertex kernel according to Eq. (6) with ¢V and
@Y feature maps for kw and ky, respectively. Then

"G = ) "wee' W (10)

veV(G)

is a feature map for K"V.

Widely used kernels for the comparison of attributes, such as the Gaussian RBF
kernel, do not have feature maps of finite dimension. However, Rahimi and Recht
(2008) obtained finite-dimensional feature maps approximating the kernels krgp and
ka of Eq. (9). Similar results are known for other popular kernels for vectorial data like
the Jaccard (Vedaldi and Zisserman 2012) and the Laplacian kernel (Andoni 2009).

In the following we approximate ky (v, w) in Eq. (6) by <$V(v), c?;v(w)), where
(;V is finite-dimensional, approximative mapping, such that with probability (1 — &)
for§ € (0, 1)

sup @Y @) 8 @) — kv w| <. an

forany ¢ > 0, and derive a finite-dimensional, approximative feature map for weighted
vertex kernels.

Proposition 4 Let K"V be a weighted vertex kernel and let D be a non—empty finite
set of graphs. Further, let $" be a feature map for ky and let ¢" be an approximative
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mapping for ky according to Eq. (11). Then we can compute an approximative feature
map ¢V for KWV such that with any constant probability

sup [(@"V(G), "V (H)) — K"V(G, H)| < A, (12)
G,HeD

forany X > 0.

Proof By inequality (11) we get that for every pair of vertices in the data set D with
any constant probability

(3V@), 8¥ @) — kv 0, w)| <.

By the above, the accumulated error is

Yo k) kw@o) = Y < ), ¢ (w)) w (v, V")

veV(G)v'eV(H) veV(G)VveV(H)

< Z Z kw(,v') - €.

veV(G)v'eV(H)

Hence, the result follows by setting e = 1/ (kmIX | Vinax |2), where kmglx is the maximum
value attained by the kernel kW and | Vimax| 18 the maximum number of vertices over
the whole data set. O

5.2 Fixed length walk kernels

In contrast to the classical walk based graph kernels, fixed length walk kernels take only
walks up to a certain length into account. Such kernels have been successfully used in
practice (Borgwardt et al. 2005; Harchaoui and Bach 2007) and are not susceptible to
the phenomenon of halting (Sugiyama and Borgwardt 2015). We propose an explicit
and implicit computation scheme for fixed length walk kernels supporting arbitrary
vertex and edge kernels. Our implicit computation scheme is based on product graphs
and benefits from sparse vertex and edge kernels. Previously no algorithms based
on explicit mapping for computation of walk-based kernels have been proposed. For
graphs with discrete labels, we identify the label diversity and walk lengths as key
parameters affecting the running time. This is confirmed experimentally in Sect. 6.

5.2.1 Basic definitions

A fixed length walk kernel measures the similarity between graphs based on the sim-
ilarity between all pairs of walks of length ¢ contained in the two graphs. A walk of

length £ in a graph G is a sequence of vertices and edges (vo, e, v, ..., €¢, vg) such
thate; = v;_1v; € E(G) fori € {1, ..., £}. We denote the set of walks of length £ in
a graph G by Wy (G).
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Definition 2 (¢-walk kernel) The €-walk kernel between two attributed graphs G and
H in G is defined as

KF(G . Hy= > Y kyww), (13)
weW, (G) w'eW,(H)

where kyw is a kernel between walks.

Definition 2 is very general and does not specify how to compare walks. An obvious
choice is to decompose walks and define ky in terms of vertex and edge kernel
functions, denoted by ky and kg, respectively. We consider

14 L
kew (w, w') = [ [ kv i, v)) [ [ ke(ei €)), (14)

i=0 i=1

where w = (vo, e, ..., ve) and w’ = (vy, €], ..., vy) are two walks.Z Assume the
graphs in a data set have simple vertex and edge labels t: VWE — L. An appropriate
choice then is to use the Dirac kernel for both, vertex and edge kernels, between the
associated labels. In this case two walks are considered equal if and only if the labels
of all corresponding vertices and edges are equal. We refer to this kernel by

14 14
Ky (w, w') = [ Tks(x i), T)) [ [ ks ei), T(e)), (15)

i=0 i=1

where ks is the Dirac kernel. For graphs with continuous or multi-dimensional anno-
tations this choice is not appropriate and ky and kg should be selected depending on
the application-specific vertex and edge attributes.

A variant of the £-walk kernel can be obtained by considering all walks up to length
L.

Definition 3 (Max-¢-walk kernel) The Max-£-walk kernel between two attributed
graphs G and H in G is defined as

KF (G H) =Y MK7 (G, H), (16)
i=0

where Lo, ..., A; € R0 are weights.

This kernel is referred to as k-step random walk kernel by Sugiyama and Borg-
wardt (2015). In the following we primary focus on the £-walk kernel, although our
algorithms and results can be easily transferred to the Max-£-walk kernel.

2 The same idea to compare walks was proposed by Kashima et al. (2003) as part of the marginalized
kernel between labeled graphs.
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5.2.2 Walk and convolution kernels

We show that the £-walk kernel is p.s.d. if kw is a valid kernel by seeing it as an
instance of an R-convolution kernel. We use this fact to develop an algorithm for
explicit mapping based on the ideas presented in Sect. 4.4.

Proposition 5 The ¢-walk kernel is positive semidefinite if ky is defined according to
Eq. (14) and ky and kg are valid kernels.

Proof The result follows from the fact that the £-walk kernel can be seen as an instance
of an R-convolution kernel, cf. Definition 1, where graphs are decomposed into walks.
Letw = (vo, e1, v1, ..., ep, v¢) = (Xo, ..., x2¢) andw’ = (x, ..., x},) be two walks
and k(w, w') = 1—[2130 K (x;, x]) with

=

ky if i is even,
Ki = :
kg otherwise

fori € {0, ..., 2¢}, then ky = «. This implies that the £-walk kernel is a valid kernel
if ky and kg are valid kernels. O

Since kernels are closed under taking linear combinations with non-negative coef-
ficients, see Sect. 4, we obtain the following corollary.

Corollary 4 The Max-£-walk kernel is positive semidefinite.
5.2.3 Implicit kernel computation

An essential part of the implicit computation scheme is the generation of the product
graph that is then used to compute the £-walk kernel.

Computing direct product graphs In order to support graphs with arbitrary attributes,
vertex and edge kernels ky and kg are considered as part of the input. Product graphs
can be used to represent these kernel values between pairs of vertices and edges of the
input graphs in a compact manner. We avoid to create vertices and edges that would
represent incompatible pairs with kernel value zero. The following definition can be
considered a weighted version of the direct product graph introduced by Girtner et al.
(2003) for kernel (:omputation.3

Definition 4 (Weighted direct product graph) For two attributed graphs G = (V, E),
H = (V', E) and given vertex and edge kernels ky and kg, the weighted direct
product graph (WDPG) is denoted by G x,, H = (V, £, w) and defined as

V={@v)eVxV |ky@) >0}
£ = {(u, W)Y, V) €[V |uv € EAuv € E'Akguv, u'v') > O]
ww) =ky(u,u’) Yv=(,u)eV

3 Note that we consider undirected graphs while Girtner et al. (2003) refers to directed graphs.
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1 1
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2 2 @‘.@ 3
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(a) @ (b) H

Fig. 1 Two attributed graphs G (a) and H (b) and their weighted direct product graph G x,, H (¢). We
assume the vertex kernel to be the Dirac kernel and kg to be 1 if edge labels are equal and % if one edge

label is “=" and the other is “~”. Thin edges in G %y, H represent edges with weight %, while all other
edges and vertices have weight 1

w(e) =kg v, u'v') Ve e &, where e = (u, u')(v, v').

Here [V]? denotes the set of all 2-element subsets of V.

An example with two graphs and their weighted direct product graph obtained for
specific vertex and edge kernels is shown in Fig. 1. Algorithm 1 computes a weighted
direct product graph and does not consider edges between pairs of vertices (v, v') that
have been identified as incompatible, i.e., ky (v, v') = 0.

Algorithm 1: Weighted direct product graph

Input  : Graphs G and H, vertex and edge kernels ky and k.
Output : Graph G xy H = (V, €, w).

Procedure WDPG(G, H, ky, kg)

1 forall the v € V(G), v € V(H) do

2 w < ky (v, v)

3 if w > 0 then

4 create vertex z = (v, v')

5 Y <« Vuw{z}

6 w(z) =w

7 forall the (u, s) € V do

8 forall the v € N(u), t € N(s) with (v,t) € V, (u,s) < (v, t) do
9 w <« kg (uv, st)

10 if w > O then

1 create edge e = (u, s)(v, t)
12 E «— EW{e}

13 w(e) =w

Since the weighted direct product graph is undirected, we must avoid that the same
pair of edges is processed twice. Therefore, we suppose that there is an arbitrary
total order < on the vertices V, such that for every pair (u, s), (v,t) € V either
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(u,s) < (v,t) or (v,t) < (u,s) holds. In line 8 we restrict the edge pairs that are
compared to one of these cases.

Proposition6 Let n = |V(G)|, n’ = |V(H)| and m = |E(G)|, m" = |E(H)|.
Algorithm 1 computes the weighted direct product graph in time O(nn'Ty +mm'Tg),
where Ty and Tg, is the running time to compute vertex and edge kernels, respectively.

Note that in case of a sparse vertex kernel, which yields zero for most of the
vertex pairs of the input graph, |V (G x,, H)| < |V(G)|- |V (H)| holds. Algorithm 1
compares two edges by kg only in case of matching endpoints (cf. lines 7, 8), therefore
in practice the running time to compare edges (line 7-13) might be considerably less
than suggested by Proposition 6. We show this empirically in Sect. 6.4. In case of sparse
graphs, i.e., |E| = O(|V]), and vertex and edge kernels which can be computed in time
O(1) the running time of Algorithm 1 is O(n?), where n = max{|V(G)|, |V (H)|}.
Counting weighted walks Given an undirected graph G with adjacency matrix A, let
af denote the element at (i, j) of the matrix A¢. Ttis well-known that af. is the number
of walks from vertex i to j of length £. The number of £-walks of G consequently
is Zi’j af’j = 1TA% = 1"ry, where r; = Ary_; with ro = 1. The ith element of
the recursively defined vector ry is the number of walks of length £ starting at vertex
i. Hence, we can compute the number of £-walks by computing either matrix powers
or matrix-vector products. Note that even for sparse (connected) graphs A¢ quickly
becomes dense with increasing walk length £. The £th power of an 7 x n matrix A can be
computed naively in time O(rn®“¢) and O(n® log £) using exponentiation by squaring,
where o is the exponent of matrix multiplication. The vector r; can be computed by
means of matrix-vector multiplications, where the matrix A remains unchanged over
all iterations. Since direct product graphs tend to be sparse in practice, we propose a
method to compute the £-walk kernel that is inspired by matrix-vector multiplication.

In order to compute the ¢-walk kernel we do not want to count the walks, but sum
up the weights of each walk, which in turn are the product of vertex and edge weights.
Let ky be defined according to Eq. (14), then we can formulate the £-walk kernel as

KZG.H)y= Y > hkyuw)= Y n@, 1D

weW (G) w'eW,(H) veV(GxyH)

where ry is determined recursively according to

ri(u) = Z wu) - wuv) -ri—1(v) Yu e V(G xyy H) (18)
uveE(GxyH)
rou) = wu) Yu € V(G xy H). (19)

Note that r; can as well be formulated as matrix-vector product. We present a graph-
based approach for computation akin to sparse matrix-vector multiplication, see
Algorithm 2.
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Algorithm 2: Implicit computation of £-walk kernel

Input  : Graphs G, H, kernels ky, kg and length parameter £.
Output : Value Kl: (G, H) of the £-walk kernel.

1 (V, &, w) < WDPG(G, H, ky, kg) > Compute G xyy H
2 forall the v € V do
3 | o) < w) > Initialization

4 fori < 1tofdo
5 forall the u € V do

6 ri(u) <0

7 forall the v € N(u) do > Neighbors of u in G xyy H
8 L ri(u) <= ri(w) +w) - wuv) -ri_1(v)

9 return )_ .y, r¢(v)

Theorem 1 Let n = |V|, m = |&E|. Algorithm 2 computes the L-walk kernel in time
O(n + £(n + m) + Twppg), where Twppg Is the time to compute the weighted direct
product graph.

Note that the running time depends on the size of the product graph and n <
[V(G)|-|V(H)|and m < |E(G)| - |E(H)| is possible as discussed in Sect. 5.2.3.

The Max-£¢-walk kernel is the sum of the j-walk kernels with j < £ and, hence,
with Eq. (17) we can also formulate it recursively as

12

L
KF(G H) =Y NKZ(G . H) =Y x4 Y. r). (20)

i=0 i=0  veV(GxyH)

This value can be obtained from Algorithm 2 by simply changing the return state-
ment in line 9 according to the right-hand side of the equation without affecting the
asymptotic running time.

5.2.4 Explicit kernel computation

We have shown in Sect. 5.2.2 that £-walk kernels are R-convolution kernels. Therefore,
we can derive explicit feature maps with the techniques introduced in Sect. 4. Provided
that we know explicit feature maps for the vertex and edge kernel, we can derive
explicit feature maps for the kernel on walks and obtain an explicit computation
scheme by enumerating all walks. We propose a more elaborated approach that avoids
enumeration and exploits the simple composition of walks.

To this end, we consider Egs. (17), (18) and (19) of the recursive product graph
based implicit computation. Let us assume that ¢" and ¢ are feature maps of the
kernels ky and kg, respectively. Then we can derive a feature map &;, such that
(@i (), Di(u)) = ri(u,u’) for all (u,u’) € V(G) x V(H)* as follows using the
results of Sect. 4.

4 We assume r; (u, u’) = 0 for (u, u’) ¢ V(G xy H) .
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Do(u) =¢" () Yue V(G)

Piw) = Y ¢ w@PFw) @i 1(v) YueV(G)
uveE(G)

From these, the feature map ¢, of the £-walk kernel is obtained according to

PG = Y Du(v).

veV(G)

Algorithm 3 provides the pseudo code of this computation. We can easily derive a
feature map of the Max-£-walk kernel from the feature maps of all i-walk kernels with
i <, cf. Proposition 2.

Algorithm 3: Generating feature vectors of the £-walk kernel

Input : Graph G, length parameter ¢, feature map ¢V of ky and oF of k E-
Output : Feature vector ¢, (G) of the £-walk kernel.

Data : Feature vectors @; (v) encoding the contribution of i-walks starting at v.
1 forall the v € V(G) do
2 L Dp(v) < qbV (v) > Initialization, length O walks

3 fori < 1tofdo

4 forall the u € V(G) do

5 Di(u) <0

6 forall the v € N(u) do

7 | i) < @)+ 0" ) ® ¢F (uv) @ &1 (v)

8 return 3,y ) P¢(v) > Combine vectors

The dimension of the feature space and the density of feature vectors depends
multiplicative on the same properties of the feature vectors of ky and kg. For non-
trivial vertex and edge kernels explicit computation of the ¢-walk kernel is likely to
be infeasible in practice. Therefore, we now consider graphs with simple labels from
the alphabet £ and the kernel k‘f)v given by Eq. (15). Following Girtner et al. (2003)
we can construct a feature map in this case, where the the features are sequences
of labels associated with walks. As we will see later, this feature space is indeed
obtained with Algorithm 3. A walk w of length £ is associated with a label sequence
T(w) = (t(vo), T(e1), ..., T(ve)) € L*F!. Moreover, graphs are decomposed into
walks and two walks w and w’ are considered equivalent if and only if t(w) = t(w’).
This gives rise to the feature map ¢, where each component is associated with a label
sequence s € £2¢+! and counts the number of walks w € W, (G) with T (w) = s. Note
that the obtained feature vectors have |£|>¢*! components, but are typically sparse. In
fact, Algorithm 3 constructs this feature map. We assume that ¢" (v) and ¢ * (uv) have
exactly one non-zero component associated with the label T (v) and t (uv), respectively.
Then the single non-zero component of ¢" (1) ® ¢F (uv) ® ¢V (v) is associated with
the label sequence t(w) of the walk w = (u, uv, v). A walk of length £ can be
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decomposed into a walk of length ¢ — 1 with an additional edge and vertex added at
the front. This allows to obtain the number of walks of length ¢ with a given label
sequence starting at a fixed vertex v by concatenating (t(v), t(vu)) with all label
sequences for walks starting from a neighbor u of the vertex v. This construction is
applied in every iteration of the outer for-loop in Algorithm 3 and the feature vectors
@; are easy to interpret. Each component of @; (v) is associated with a label sequence
s € £%*1 and counts the walks w of length i starting at v with 7 (w) = s.

We consider the running time for the case, where graphs have discrete labels and
the kernel k‘f,v is given by Eq. (15).

Theorem 2 Given a graph G with n = |V(G)| vertices and m = |E(G)| edges,
Algorithm 3 computes the £-walk kernel feature vector ¢, (G) intime O (n+£(n+m)s),
where s is the maximum number of different label sequences of (¢ — 1)-walks staring
at a vertex of G.

Assume Algorithm 3 is applied to unlabeled sparse graphs, i.e., |E(G)| =
OV (G)|), then s = 1 and the feature mapping can be performed in time O(n + £n).
This yields a total running time of O(dfn + d*) to compute a kernel matrix for d
graphs of order n for £ > 0.

5.3 Shortest-path kernel

A classical kernel applicable to attributed graphs is the shortest-path kernel (Borgwardt
and Kriegel 2005). This kernel compares all shortest paths in two graphs according
to their lengths and the vertex annotation of their endpoints. The kernel was proposed
with an implicit computation scheme, but explicit methods of computation have been
reported to be used for graphs with discrete labels.

The shortest-path kernel is defined as

PG HY = Y Y kvw) ke (du, dug) - kv(v,2), (1)

u,veV(G), w,zeV(H),
u#v w#Z

where kv is a kernel comparing vertex labels of the respective starting and end vertices
of the paths. Here, d,,, denotes the length of a shortest path from u to v and kg is a
kernel comparing path lengths with kg (dyy, dy;) = 0if dy,y, = oo or dy; = o0.

Its computation is performed in two steps (Borgwardt and Kriegel 2005): for each
graph G of the data set the complete graph G’ on the vertex set V(G) is generated,
where an edge uv is annotated with the length of a shortest path from u to v. The
shortest-path kernel then is equivalent to the walk kernel with fixed length £ = 1
between these transformed graphs, where the kernel essentially compares all pairs of
edges. The kernel kg used to compare path lengths may, for example, be realized by
the Brownian Bridge kernel (Borgwardt and Kriegel 2005).

For the application to graphs with discrete labels a more efficient method of com-
putation by explicit mapping has been reported by Shervashidze et al. (2011, Section
3.4.1). When ky and kg both are Dirac kernels, each component of the feature vector
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corresponds to a triple consisting of two vertex labels and a path length. This method
of computation has been applied in several experimental comparisons, e.g., Kriege and
Mutzel (2012) and Morris et al. (2016). This feature map is directly obtained from our
results in Sect. 4. It is as well rediscovered from our explicit computation schemes for
fixed length walk kernels reported in Sect. 5.2. However, we can also derive explicit
feature maps for non-trivial kernels ky and kg. Then the dimension of the feature map
increases due to the product of kernels, cf. Eq. 21. We will study this and the effect on
running time experimentally in Sect. 6.

5.4 Graphlet, subgraph and subgraph matching kernels

Subgraph or graphlet kernels have been proposed for unlabeled graphs or graphs with
discrete labels (Girtner et al. 2003; Wale et al. 2008; Shervashidze et al. 2009). The sub-
graph matching kernel has been developed as an extension for attributed graphs (Kriege
and Mutzel 2012).

Given two graphs G and H in G, the subgraph kernel is defined as

kS(G HY= Y > k=(G', H), (22)

G'CG H'CH

where k~: G x G — {0, 1} is the isomorphism kernel, i.e., k~(G’, H') = 1 if and
only if G’ and H' are isomorphic. A similar kernel was defined by Girtner et al.
(2003) and its computation was shown to be NP-hard. However, it is polynomial
time computable when considering only subgraphs up to a fixed size. The subgraph
kernel, cf. Eq. (22), is easily identified as an instance of the crossproduct kernel, cf.
Eq. (2). The base kernel k~ is not the trivial Dirac kernel, but binary, cf. Sect. 4.1.
The equivalence classes induced by k~ are referred to as isomorphism classes and
distinguish subgraphs up to isomorphism. The feature map ¢< of k< maps a graph
to a vector, where each component counts the number of occurrences of a specific
graph as subgraph in G. Determining the isomorphism class of a graph is known
as graph canonization problem and well-studied. By solving the graph canonization
problem instead of the graph isomorphism problem we obtain an explicit feature map
for the subgraph kernel. Although graph canonization clearly is at least as hard as
graph isomorphism, the number of canonizations required is linear in the number of
subgraphs, while a quadratic number of isomorphism tests would be required for a
single naive computation of the kernel. The gap in terms of runtime even increases
when computing a whole kernel matrix, cf. Sect. 3.

Indeed, the observations above are key to several graph kernels. The graphlet ker-
nel (Shervashidze et al. 2009), also see Sect. 2, is an instance of the subgraph kernel
and computed by explicit feature maps. However, only unlabeled graphs of small size
are considered by the graphlet kernel, such that the canonizing function can be com-
puted easily. The same approach was taken by Wale et al. (2008) considering larger
connected subgraphs of labeled graphs derived from chemical compounds. On the
contrary, for attributed graphs with continuous vertex labels, the function k~ is not
sufficient to compare subgraphs adequately. Therefore, subgraph matching kernels
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were proposed by Kriege and Mutzel (2012), which allow to specify arbitrary kernel
functions to compare vertex and edge attributes. Essentially, this kernel considers all
mappings between subgraphs and scores each mapping by the product of vertex and
edge kernel values of the vertex and edge pairs involved in the mapping. When the
specified vertex and edge kernels are Dirac kernels, the subgraph matching kernel
is equal to the subgraph kernel up to a factor taking the number of automorphisms
between subgraphs into account (Kriege and Mutzel 2012). Based on the above obser-
vations explicit mapping of subgraph matching kernels is likely to be more efficient
when subgraphs can be adequately compared by a binary kernel.

5.5 Discussion

A crucial observation of our study of feature maps for composed kernels in Sect. 4 is
that the number of components of the feature vectors increases multiplicative under
taking products of kernels; this also holds in terms of non-zero components. Unless
feature vectors have few non-zero components, this operation is likely to be prohibitive
in practice. However, if feature vectors have exactly one non-zero component like those
associated with binary kernels, taking products of kernels is manageable by sparse data
structures.

In this section we have systematically constructed and discussed feature maps of
several graph kernels and the observation mentioned above is expected to affect the
kernels to varying extents. While weighted vertex kernels do not take products of vertex
and edge kernels, the shortest-path kernel and, in particular, the subgraph matching
and fixed length walk kernels heavily rely on multiplicative combinations. Considering
the relevant special case of a Dirac kernel, which leads to feature vectors with only
one non-zero component, the rapid growth due to multiplication is tamed. In this
case the number of substructures considered as different according to the vertex and
edge kernels determines the number of non-zero components of the feature vectors
associated with the graph kernel. The basic characteristics of the considered graph

Table 2 Graph kernels and their properties

Graph kernel Parts Dimension Running time (implicit)
GRAPHHOPPER o) 82dy 10} (nz(m +logn+Ty + 82))
GRAPHINVARIANT O(n) Cdy @ (hm + nZTV)
FIXEDLENGTHWALK oY dy + (dydg)* 16) <€(n2 +m?) +n?Ty + m2TE)
SHORTESTPATH On?) didg e} (nZTV + n4TE)
SUBGRAPHMATCHING On®) (dyd%)*s! o (sn2s+2 +n?Ty + n4TE)

We consider graphs on n vertices and m edges with maximum degree A. Let § be the maximum diameter
of any graph G in the data sets and C the total number of colors appearing in 4 iterations of Weisfeiler-
Lehman refinement. The dimension of the feature space associated with ky and kg is denoted by dy and
dE, respectively, while Ty and Tg is the time to evaluate the vertex and edge kernel once. The parameters
£ and s denote the walk length and subgraph size, respectively
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kernels are summarized in Table 2. The sparsity of the feature vectors of the vertex and
edge kernels is an important intervening factor, which is difficult to assess theoretically
and we proceed by an experimental study.

6 Experimental evaluation

Our goal in this section is to answer the following questions experimentally.

QI Are approximative explicit feature maps of kernels for attributed graphs com-
petitive in terms of running time and classification accuracy compared to exact
implicit computation?

Q2 Are exact explicit feature maps competitive for kernels relying on multiplication
when the Dirac kernel is used to compare discrete labels? How do the graph
properties such as label diversity affect the running time?

(a) How does the fixed length walk kernel behave with regard to these questions
and what influence does the walk length have?

(b) Can the same behavior regarding running time be observed for the graphlet
and subgraph matching kernel?

6.1 Experimental setup

All algorithms were implemented in Java and the default Java HashMap class was
used to store feature vectors. Due to the varied memory requirements of the individual
series of experiments, different hardware platforms were used in Sects. 6.2, 6.4 and 6.5.
In order to compare the running time of both computational strategies systematically
without the dependence on one specific kernel method, we report the running time to
compute the quadratic kernel matrices, unless stated otherwise. We performed classifi-
cation experiments using the C-SVM implementation LIBSVM (Chang and Lin 2011).
We report mean prediction accuracies obtained by 10-fold cross-validation repeated
10 times with random fold assignments. Within each fold all necessary parameters
were selected by cross-validation based on the training set. This includes the regu-
larization parameter C selected from {10_3, 1072, ..., 103}, all kernel parameters,
where applicable, and whether to normalize the kernel matrix.

6.1.1 Data sets

We performed experiments on synthetic and real-world data sets from different
domains, see Table 3 for an overview on their characteristics. All data sets can be
obtained from our publicly available collection (Kersting et al. 2016) unless the source
is explicitly stated.

Small molecules Molecules can naturally be represented by graphs, where vertices
represent atoms and edges represent chemical bonds. MUTAG is a data set of chemical
compounds divided into two classes according to their mutagenic effect on a bac-
terium. This small data set is commonly used in the graph kernel literature. In addition
we considered the larger data set U251, which stems from the NCI Open Database
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Table 3 Data set statistics and properties

Data set Properties

Graphs Classes Avg. |V| Avg. |E| Vertex/edge labels Attributes

MUTAG 188 2 17.9 19.8 +/+ -
U251 3755 2 23.1 24.8 +/+ -
ENZYMES 600 6 32.6 62.1 +/+ 18
PROTEINS 1113 2 39.1 72.8 +/— 1
SYNTHETICNEW 300 2 100.0 196.3 —/— 1
SYNTHIE 400 4 95.0 1729 —/— 15

provided by the National Cancer Institute (NCI). In this data set the class labels indi-
cate the ability of a compound to inhibit the growth of the tumor cell line U251. We
used the data set processed by Swamidass et al. (2005), which is publicly available
from the ChemDB website.?

Macromolecules ENZYMES and PROTEINS both represent macromolecular structures
and were obtained from Borgwardt et al. (2005) and Feragen et al. (2013). The follow-
ing graph model has been employed. Vertices represent secondary structure elements
(SSE) and are annotated by their type, i.e., helix, sheet or turn, and arich set of physical
and chemical attributes. Two vertices are connected by an edge if they are neighbors
along the amino acid sequence or one of three nearest neighbors in space. Edges are
annotated with their type, i.e., structural or sequential. In ENZYMES each graph is
annotated by an EC top level class, which reflects the chemical reaction the enzyme
catalyzes, PROTEINS is divided into enzymes and non-enzymes.

Synthetic graphs The data sets SYNTHETICNEW and SYNTHIE were synthetically gener-
ated to obtain classification benchmarks for graph kernels with attributes. We refer the
reader to the publications Feragen et al. (2013)¢ and Morris et al. (2016), respectively,
for the details of the generation process. Additionally, we generated new synthetic
graphs in order to systematically vary graph properties of interest like the label diver-
sity, which we expect to have an effect on the running time according to our theoretical
analysis.

6.2 Approximative explicit feature maps of kernels for attributed graphs (Q1)

We have derived explicit computation schemes of kernels for attributed graphs, which
have been proposed with an implicit method of computation. Approximative explicit
computation is possible under the assumption that the kernel for the attributes can
be approximated by explicit feature maps. We compare both methods of computation
w.r.t. their running time and the obtained classification accuracy on the four attributed
graph data sets ENZYMES, PROTEINS, SYNTHETICNEW and SYNTHIE. Since the dis-
crete labels alone are often highly informative, we ignored discrete labels if present

5 http://cdb.ics.uci.edu.

© We used the updated version of the data set SYNTHETIC published together with the Erratum to Feragen
et al. (2013).
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and considered the real-valued vertex annotations only in order to obtain challenging
classification problems. All attributes where dimension-wise linearly scaled to the
range [0, 1] in a preprocessing step.

6.2.1 Method

We employed three kernels for attributed graphs: the shortest-path kernel, cf. Sect. 5.3,
the GRAPHHOPPER and GRAPHINVARIANT kernel as described in Sect. 5.1.1. Prelimi-
nary experiments with the subgraph matching kernel showed that it cannot be computed
by explicit feature maps for non-trivial subgraph sizes due to its high memory con-
sumption. The same holds for fixed length walk kernels with walk length ¢ > 3.
Therefore, we did not consider these kernels any further regarding Q1, but investigate
them for graphs with discrete labels in Sects. 6.4 and 6.5 to answer Q2a and Q2b.

For the shortest-path kernel we used the Dirac kernel to compare path lengths
and selected the number of Weisfeiler-Lehman refinement steps for the GRAPHIN-
VARIANT kernel from i € {0, ..., 7}. For the comparison of attributes we employed
the dimension-wise product of the hat kernel k4 as defined in Eq. (9) choosing §
from {0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0}. The three kernels were computed functionally
employing this kernel as a base line. We obtained approximate explicit feature maps
for the attribute kernel by the method of Rahimi and Recht (2008) and used these to
derive approximate explicit feature maps for the graph kernels. We varied the num-
ber of random binning features from {1, 2, 4, 8, 16, 32, 64}, which corresponds to the
number of non-zero components of the feature vectors for the attribute kernel and
controls its approximation quality. Please note that the running time is effected by the
kernel parameters, i.e., § of Eq. (9) and the number £ of Weisfeiler-Lehman refinement
steps for GRAPHINVARIANT. Therefore, in the following we report the running times
for fixed values § = 1 and & = 3, which were selected frequently by cross-validation.

All experiments were conducted using Oracle Java v1.8.0 on an Intel Xeon E5-2640
CPU at 2.5 GHz with 64 GB of RAM using a single processor only.

6.2.2 Results and discussion

We were not able to compute the shortest-path kernel by explicit feature maps with
more than 16 iterations of binning for the base kernel on ENZYMES and PROTEINS
and no more than 4 iterations on SYNTHIE and SYNTHETICNEW with 64 GB of main
memory. The high memory consumption of this kernel is in accordance with our
theoretical analysis, since the multiplication of vertex and edge kernels drastically
increases the number of non-zero components of the feature vectors. This problem
does not effect the two weighted vertex kernels to the same extent. We observed the
general trend that the memory consumption and running time increases with small
values of §. This is explained by the fact that the number of components of the feature
vectors of the vertex kernels increases in this case. Although the number of non-zero
components does not increase for these feature vectors, it does for the graph kernel
feature vectors, since the number of vertices with attributes falling into different bins
increases.
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Fig.2 Running times and classification accuracies of graph kernels approximated by explicit feature maps
with 2!, i € {0, ..., 4}, iterations of random binning. The results of exact implicit computation are shown
as a base line (left y-axes shows the running time in seconds, right y-axes the accuracy in percent; GH—

GRAPHHOPPER, GI—GRAPHINVARIANT, SP—SHORTESTPATH)

The results on running time and accuracy are summarized in Fig. 2. For the two data
sets ENZYMES and SYNTHIE we observe that the classification accuracy obtained by
the approximate explicit feature maps approaches the accuracy obtained by the exact
method with increasing number of binning iterations. For the other two data sets the
accuracy does not improve with the number of iterations. For PROTEINS the kernels
obtained with a single iteration of binning, i.e., essentially applying a Dirac kernel,
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achieve an accuracy at the same level as the exact kernel obtained by implicit compu-
tation. This suggests that for this data set a trivial comparison of attributes is sufficient
or that the attributes are not essential for classification at all. For SYNTHETICNEW the
kernels using a single iteration of binning are even better than the exact kernel, but get
worse as the number of iterations increases. One possible explanation for this is that
the vertex kernel used is not a good choice for this data set.

With few iteration of binning the explicit computation scheme is always faster
than the implicit computation. The growth in running time with increasing number
of binning iterations for the vertex kernel varies between the graph kernels. Approx-
imating the GRAPHHOPPER kernel by explicit feature maps with 64 binning iteration
for the vertex kernel leads to a running time similar to the one required for its exact
implicit computation on all data sets with exception of SYNTHETICNEW. On this data
set explicit computation remains faster. For GRAPHINVARIANT explicit feature maps
lead to a running time which is orders of magnitude lower than implicit computation.
Although both, GRAPHHOPPER and GRAPHINVARIANT are weighted vertex kernels,
this difference can be explained by the number of non-zero components in the feature
vectors of the weight kernel. We observe that GRAPHINVARIANT clearly provides the
best classification accuracy for two of the four data sets and is competitive for the
other two. At the same time GRAPHINVARIANT can be approximated very efficiently
by explicit feature maps. Therefore, even for attributed graphs effective and efficient
graph kernels can be obtained from explicit feature maps by our approach.

6.3 Kernels for graphs with discrete labels (Q2)

In order to get a first impression of the runtime behavior of explicit and implicit
computation schemes on graphs with discrete labels, we computed the kernel matrix
for the standard data sets ignoring the attributes, if present. The experiments were
conducted using Java OpenJDK v1.7.0 on an Intel Core i7-3770 CPU at 3.4 GHz
(Turbo Boost disabled) with 16 GB of RAM using a single processor only. The reported
running times are average values over 5 runs.

The results are summarized in Table 4. For the shortest-path kernel explicit map-
ping clearly outperforms implicit computation by several orders of magnitude with
respect to running time. This is in accordance with our theoretical analysis and our
results suggest to always use explicit computation schemes for this kernel whenever
a Dirac kernel is adequate for label and path length comparison. In this case memory
consumption is unproblematic, in contrast to the setting discussed in Sect. 6.2.

Note that the explicit computation of the fixed length random walk kernel is
extremely efficient on SYNTHETICNEW and SYNTHIE, which have uniform discrete
labels, but strongly depends on the walk length for the other data sets. This observa-
tion is investigated in detail in Sect. 6.4. The running times of the connected subgraph
matching kernel and the graphlet kernel are studied exhaustively in Sect. 6.5.
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Table 4 Running times of the fixed length walk kernel (FLRW,) with walk lengths ¢, the shortest-path
kernel (SP), connected subgraph matching kernel (CSM) and the graphlet kernel (GL) on graphs with
discrete labels in seconds unless stated otherwise

Kernel MUTAG U251 ENZYMES PROTEINS SYNTHETICNEW SYNTHIE
Implicit

FLRW( 0.618 250.3 20.67 100.8 159.5 2242
FLRW | 0.606 281.6 23.45 116.4 202.3 284.1
FLRW»> 0.652 303.4 26.03 132.0 236.2 330.7
FLRW3 0.617 323.8 28.18 143.0 270.4 377.1
FLRW4 0.653 343.8 30.63 156.2 304.3 424.2
FLRW3 0.693 363.7 32.65 169.5 336.9 468.6
FLRW¢ 0.733 383.5 34.86 182.5 371.2 513.6
FLRW7, 0.779 404.4 36.94 195.8 404.4 558.9
FLRWg 0.870 4253 38.16 208.8 438.0 603.9
FLRWg 0.877 447.7 39.97 221.3 470.1 648.1
SP 5.272 2h6'55” 98" 4h58'40" 2h14/23” 2h39'30”
CSM 15.45 4h0'16” 34'15" OOM >24h >24h
Explicit

FLRW( 0.004 0.868 0.029 0.081 0.008 0.016
FLRW| 0.014 2.827 0.080 0.141 0.024 0.032
FLRW» 0.019 7.844 0.170 0.251 0.040 0.051
FLRW3 0.035 14.96 0.466 0.545 0.056 0.070
FLRW4 0.058 31.73 1.518 1.207 0.072 0.092
FLRWj5 0.147 64.57 4.629 2.991 0.089 0.110
FLRW¢ 0.461 107.8 13.58 6.476 0.104 0.128
FLRW7 1.127 170.9 37.72 12.07 0.124 0.150
FLRWg 2.491 346.0 95.03 24.48 0.141 0.172
FLRWg 4.809 646.8 278.4 56.62 0.161 0.192
Sp 0.120 27.82 0.907 3.121 1.332 1.459
GL 0.011 3.512 0.205 0.354 0.186 0.310

OOM out of memory

6.4 Fixed length walk kernels for graphs with discrete labels (Q2a)

Our comparison in Sect. 6.2 showed that computation by explicit feature maps becomes
prohibitive when vertex and edge kernels with feature vectors having multiple non-
zero components are multiplied. This is even observed for the shortest-path kernel,
which applies a walk kernel of fixed length one. Therefore, we study the implicit and
explicit computation schemes of the fixed length walk kernel on graphs with discrete
labels, which are compared by the Dirac kernel, cf. Eq. (15). Since both computation
schemes produce the same kernel matrices, our main focus in this section is on running
times.
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The discussion of running times for walk kernels in Sects. 5.2.3 and 5.2.4 suggested
that

(1) implicit computation benefits from sparse vertex and edge kernels,
(i1) explicit computation is promising for graphs with a uniform label structure, which
exhibit few different features, and then scales to large data sets.

We experimentally analyze this trade-off between label diversity and running time for
synthetic and real-world data sets ignoring any attributes, if present. Finally, we use our
walk kernels to compare graphs after applying different levels of label refinement using
the Weisfeiler-Lehman method. We used the same experimental method as reported
in Sect. 6.3.

6.4.1 Synthetic data sets

In order to systematically vary the label diversity we generated synthetic graphs by the
following procedure: the number of vertices was determined by a Poisson distribution
with mean 20. Edges were inserted between a pair of vertices with probability 0.1.
The label diversity depends on the parameter py. Edges were uniformly labeled; a
vertex obtained the label 0 with probability 1 — py. Otherwise the labels 1 or 2 were
assigned with equal probability. In addition, we vary the data set size d between 100
and 300 adding 20 randomly generated graphs in each step.

The results are depicted in Fig. 3, where a label diversity of 50 means that py = 0.5.
Figure 3a shows that the running time for implicit computation increases with the data
set size and decreases with the label diversity. This observation is in accordance with
our hypotheses. When the label diversity increases, there are less compatible pairs
of vertices and the weighted direct product graph becomes smaller. Consequently, its
computation and the counting of weighted walks require less running time. For explicit
computation we observe a different trend: while the running time increases with the size
of the data set, the approach is extremely efficient for graphs with uniform labels (py =
0) and becomes slower when the label diversity increases, cf. Fig. 3b. Combining both
results, cf. Fig. 3c, shows that both approaches yield the same running time for a label
diversity of py ~ 0.3, while for higher values of py implicit computation is preferable
and explicit otherwise.

6.4.2 Molecular data sets

In the previous section we have observed how both approaches behave when the label
diversity is varied. We use the data set U251 of graphs derived from small molecules to
analyze the running time on a real-world data set with a predetermined label diversity.
Vertex labels correspond to the atom types and edge labels represent single, double,
triple and aromatic bonds, respectively. This time we vary the walk length and the
data set size by starting with a random subset and adding additional graphs that were
selected randomly from the remaining graphs of the data set.

Figure 4a shows that the running time of the implicit computation scheme heavily
depends on the size of the data set. The increase with the walk length is less consider-
able. This can be explained by the time Twppg required to compute the product graph,
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which is always needed independent of the walk length. For short walks explicit com-
putation is very efficient, even for larger data sets, cf. Fig. 4b. However, when a certain
walk length is reached the running time increases drastically. This can be explained
by the growing number of different label sequences. Notably for walks of length 8 and
9 the running time also largely increases with the data set size. This indicates that the
time Tyo has a considerable influence on the running time. In the following section we
analyze the running time of the different procedures for the two algorithms in more
detail. Figure 4c shows that for walk length up to 7 explicit computation beats implicit
computation on the molecular data set.

6.4.3 ENZYMES and MUTAG

We have shown that up to a certain walk length explicit computation is more efficient
than implicit computation. We want to clarify the relation between the walk length
and the prediction accuracy in a classification task. In addition, we analyze the ratio
between the time Ty for computing the explicit mapping and Tqq for taking dot prod-
ucts. For the implicit computation scheme we want to clarify the running time of
Twppc and the time required for counting weighted walks. We apply both algorithms
to two widely used data sets, MUTAG and ENZYMES, and vary the walk length, see
Table 3 for details on these data sets.

Figure 5 shows the running time of both algorithms depending on the walk length
and gives the time for product graph computation and explicit mapping, respectively.
In addition, the prediction accuracy is presented. For both data sets we observe that up
to a walk length of 7 explicit mapping is more efficient. Notably a peak of the accuracy
is reached for walk length smaller than 7 in both cases. For the MUTAG data set walks
of length 3 provide the best results and walks of length 6 for the ENZYMES data set, i.e.,
in both cases explicit mapping should be preferred when computing a walk kernel of
fixed length. The running time of the product graph computation is constant and does
not depend on the walk length. For explicit mapping the time required to compute
the dot product becomes dominating when the walk length is increased. This can be
explained by the fact that the generation of the kernel matrix involves a quadratic
number of dot product computations. Note that the given times include a quadratic
number of product graph computations while the times for generating the feature
vectors include only a linear number of operations.

As aside note, we also compared the accuracy of the fixed length walk kernels to the
accuracy reached by the geometric random walk kernel (GRW) according to Gértner
etal. (2003), which considers arbitrary walk lengths. The parameter y of the geometric
random walk kernel was selected by cross-validation from {10_5, 1074, ..., 10_2}.
We observed that the accuracy of the fixed length walk kernel is competitive on the
MUTAG data set (GRW 87.3), and considerably better on the ENZYMES data set (GRW
31.6), cf. Fig. 5. This is remarkable, since the fixed length walk kernel yields best results
with walk length 6, for which it is efficiently computed by explicit mapping. However,
this is not possible for the geometric random walk kernel. For a more detailed dis-
cussion and comparison between fixed length walk kernels and the geometric random
walk kernel we refer the reader to Sugiyama and Borgwardt (2015), which appeared
after the conference publication (Kriege et al. 2014).
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Fig.5 Running time to generate the kernel matrix by explicit and implicit computation on the ENZYMES and
MUTAG data sets depending on the walk length. Both approaches compute the same kernel matrix which
leads to the accuracy plotted on the right y-axis

6.4.4 Weisfeiler-Lehman label refinement

Walk kernels have been successfully combined with label refinement techniques (Mahé
et al. 2004). We employ the Weisfeiler-Lehman label refinement (WL) as described
in Sect. 5.1.1. To further analyze the sensitivity w.r.t. label diversity, we again use the
ENZYMES data set, which consists of graphs with three vertex and two edge labels
initially. We apply our algorithms for explicit and implicit computation after O to 3
iterations of WL, see Fig. 6.

If no refinement is applied, the explicit mapping approach beats the product graph
based algorithm for the used walk lengths. However, as soon as a single iteration of
label refinement is performed, the product graph based algorithm becomes competitive
for walk length 0 and 1 and outperforms the explicit mapping approach for higher
walk lengths. The running times do not change substantially for more iterations of
refinement. This indicates that a single iteration of Weisfeiler-Lehman refinement
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Runtime [s] implicit —+—
50 _ explicit -+~ b
40 L

30 L

Fig. 6 Running time to generate the kernel matrix by implicit and explicit computation of walk kernels
with varying walk length and iterations of Weisfeiler-Lehman refinement on the ENZYMES data set

results in a high label diversity that does not increase considerably for more iterations
on the ENZYMES data set. When using our walk-based kernel as base kernel of a
Weisfeiler-Lehman graph kernel (Shervashidze et al. 2011), our observation suggests
to start with explicit computation and switch to the implicit computation scheme after
few iterations of refinement.

6.5 Subgraph kernels for graphs with discrete labels (Q2b)

In this section we experimentally compare the running time of the subgraph matching
and the subgraph (or graphlet) kernel as discussed in Sect. 5.4. The explicit computa-
tion scheme, which is possible for graphs with discrete labels compared by the Dirac
kernel, is expected to be favorable.

6.5.1 Method

We have reimplemented a variation of the graphlet kernel taking connected induced
subgraphs with three vertices and discrete vertex and edge labels into account. The only
possible features are triangles and paths of length two. Graph canonization is realized
by selecting the lexicographically smallest string obtained by traversing the graph and
concatenating the observed labels. Our implementation is similar to the approach used
by Shervashidze et al. (2011) as extension of the original graphlet kernel (Shervashidze
et al. 2009) to the domain of labeled graphs. We refer to this method as graphlet kernel
in the following. We compared the graphlet kernel to the connected subgraph matching
kernel taking only connected subgraphs on three vertices into account. In order not to
penalize the running time of the connected subgraph matching kernel by additional
automorphism computations, the weight function does not consider the number of
automorphisms (Kriege and Mutzel 2012, Theorem 2) and, consequently, not the
same kernel values are computed.
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The experiments were conducted using Sun Java JDK v1.6.0 on an Intel Xeon
E5430 machine at 2.66 GHz with 8 GB of RAM using a single processor only. The
reported running times are average values over 5 runs.

6.5.2 Results and discussion

For real-world instances we observed that explicit computation outperforms implicit
computation by several orders of magnitude, cf. Table 4. This in accordance with our
theoretical analysis. However, the practical considerations suggest that explicit and
implicit computation behave complementary and subgraph matching kernels become
competitive if a sufficient small and sparse weighted product graph is generated, which
occurs for graphs with increasing label diversity as for the walk-based kernels. Hence,
we randomly generated graphs with the following procedure: the number of vertices
was determined by a Poisson distribution with mean 60. Edges were inserted between
a pair of vertices with probability 0.5. Labels for vertices and edges were assigned
with equal probability, whereas the size of the label alphabet £ = Ly = L is varied
from 1, i.e., uniform labels, to 65. Note that the graphs obtained by this procedure have
different characteristics than those used to show the computational phase transition
for walk-based kernels. We vary the data set size d between 100 and 300 adding 50
randomly generated graphs in each step and analyze the running time to compute the
d x d kernel matrix. For the subgraph matching kernel we used the Dirac kernel as
vertex and edge kernel.

Figure 7 shows a computational phase transition: for the synthetic data set the
subgraph matching kernel is more efficient than the graphlet kernel for instances with
20-30 different labels and its running time increases drastically when the number
of labels decreases. The graphlet kernel in contrast is more efficient for graphs with
uniform or few labels. For more than 10 different labels, there is only a moderate
increase in running time. This can be explained by the fact that the number of features
contained in the graphs does not increase considerably as soon as a certain number of
different labels is reached. The enumeration of triangles dominates the running time
for this relatively dense synthetic data set. The running time behavior of the subgraph
matching kernel is as expected and is directly related to the size and number of edges
in the weighted association graph.

Our synthetic data set differs from typical real-world instances, since we generated
dense graphs with many different labels, which are assigned uniformly at random. For
real-world data sets the graphlet kernel consistently outperforms the subgraph match-
ing kernel by orders of magnitude. It would be interesting to further investigate where
this computational phase transition occurs for larger subgraphs and to analyze if the
implicit computation scheme then becomes competitive for instances of practical rele-
vance. This requires the implementation of non-trivial graph canonization algorithms
and remains future work. The results we obtained clearly suggest to prefer the explicit
computation schemes when no flexible scoring by vertex and edge kernels is required.
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(a) Subgraph matching kernel (implicit)
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(b) Graphlets with three vertices (explicit)
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(¢) Implicit and explicit computation
Fig. 7 Running time to generate the kernel matrix by implicit and explicit computation for synthetic data

sets with varying size of the label alphabet. a, b Show contour lines obtained by linear interpolation, ¢
shows the two approaches in direct comparison

7 Conclusion

The breadth of problems requiring to deal with graph data is growing rapidly and graph
kernels have become an efficient and widely used method for measuring similarity
between graphs. Highly scalable graph kernels have recently been proposed for graphs
with thousands and millions of vertices based on explicit graph feature maps. Implicit
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computation schemes are used for kernels with a large number of possible features
such as walks and when graphs are annotated by continuous attributes.

To set the stage for the experimental comparison, we actually made several contri-
butions to the theory and algorithmics of graph kernels. We presented a unified view on
implicit and explicit graph features. More precisely, we derived explicit feature maps
from the implicit feature space of convolution kernels and analyzed the circumstances
rendering this approach feasible in practice. Using these results, we developed explicit
computation schemes for random walk kernels (Girtner et al. 2003; Vishwanathan
et al. 2010), subgraph matching kernels (Kriege and Mutzel 2012), and shortest-path
kernels (Borgwardt and Kriegel 2005). Moreover, we introduced weighted vertex ker-
nels and derived explicit feature maps. As a result of this we obtained approximate
feature maps for state-of-the-art kernels for graphs with continuous attributes such
as the GraphHopper kernel (Feragen et al. 2013). For fixed length walk kernels we
have developed implicit and explicit computation schemes and analyzed their run-
ning time. Our theoretical results have been confirmed experimentally by observing a
computational phase transition with respect to label diversity and walk lengths.

We have shown that kernels composed by multiplication of non-trivial base kernels
may lead to arapid growth of the number of non-zero components in the feature vectors,
which renders explicit computation infeasible. One approach to alleviate this in future
work is to introduce sampling or hashing to obtain compact feature representations in
such cases, e.g., following the work by Shi et al. (2009).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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