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Abstract Mining and exploring databases should provide users with knowledge
and new insights. Tiles of data strive to unveil true underlying structure and
distinguish valuable information from various kinds of noise. We propose a novel
Boolean matrix factorization algorithm to solve the tiling problem, based on recent
results from optimization theory. In contrast to existing work, the new algorithm
minimizes the description length of the resulting factorization. This approach is
well known for model selection and data compression, but not for finding suitable
factorizations via numerical optimization. We demonstrate the superior robustness
of the new approach in the presence of several kinds of noise and types of under-
lying structure. Moreover, our general framework can work with any cost measure
having a suitable real-valued relaxation. Thereby, no convexity assumptions have
to be met. The experimental results on synthetic data and image data show that
the new method identifies interpretable patterns which explain the data almost
always better than the competing algorithms.

Keywords Tiling - Boolean Matrix Factorization - Minimum Description Length
principle - Proximal Alternating Linearized Minimization - Nonconvex-Nonsmooth
Minimization - Alternating Minimization

1 Introduction

In a large range of data mining tasks such as Market Basket Analysis, Text Min-
ing, Collaborative Filtering or DNA Expression Analysis, we are interested in the
exploration of data which is represented by a binary matrix. Data exploration is
unsupervised by nature; the objective is to gain insight by a summarization of its
relevant parts. Here, we seek for sets of columns and rows whose intersecting po-
sitions frequently feature a one. This identifies, e.g., groups of users together with
their shared preferences, genes that are often co-expressed among several tissue
samples, or words that occur together in documents describing the same topic. The
identification of such sets of columns and rows is studied from the perspective of
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Fig. 1: Example binary dataset (left) with ones in yellow and zeros in blue. A
rearrangement of columns and rows unveils structure (right).

various data mining subfields as biclustering, tiling or matriz factorization (Tatti
and Vreeken 2012; Zimek and Vreeken 2013).

Consider the example binary database presented on the left in Fig. 1. The
distribution of ones appears disarrayed, but a suitable permutation of columns and
rows reveals a formation of blocks, depicted by the matrix on the right. Interpreting
all binary entries which do not fit to this formation as noise, we aim to separate
the haphazard component from the formative one.

This objective is difficult to delineate: where to draw the line between structure
and noise? Are there natural limitations on the amount of blocks to derive? To
what extend may they overlap? Miettinen and Vreeken (2014) successfully apply
the Minimum Description Length (MDL) principle to reduce these considerations
into one objective: exploit just as many regularities as serves the compression of the
data. Identifying regularities with column-row interrelations, the description length
counterbalances the complexity of the model (derived interrelations) and the fit
to the data, measured by the size of the encoded data using the model. Decisive
for the feasibility of extracted components is the definition of the encoding.

Miettinen and Vreeken (2014) evaluate several encodings with respect to their
ability to filter a planted structure from noise. The method they use applies a
greedy Boolean matrix factorization to extract candidate interrelations which are
selected according to a specified description length. Another framework proposed
by Lucchese et al (2014) greedily selects the interrelations directly in accordance
with the description length. Most recently, Karaev et al (2015) propose another
greedy algorithm with focus on a setting where ones more probably indicate in-
terrelations than noise. All these methods are capable to identify the underlying
structure in respectively examined settings. All in all, the experiments indicate
however that the quality considerably varies depending on the distribution of noise
and characteristics of the dataset (Miettinen and Vreeken 2014; Karaev et al 2015).

For real-world datasets, it is difficult (if not impossible) to estimate these as-
pects, in order to choose the appropriate algorithm or to assess its quality on
the given dataset. Believing that the unsteady performance is due to a lack of
theoretical foundation, we introduce a framework called PAL-Tiling to numeri-
cally optimize a cost measure which has a suitable real-valued approximation. In
this respect, we derive approximations of two MDL cost measures, consequently
proposing two algorithms: one applying Ll-regularization on the matrix factor-
ization (PANPAL) and one employing an encoding by code tables as proposed by
Siebes et al (2006) (PriMP). We assess the algorithms’ ability to filter the ¢rue
underlying structure from the noise. Therefore, we compare various performance
measures in a controlled setting of synthetically generated data as well as for real-
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world data. We show that PRIMP is capable of recovering the latent structure in
spite of varying database characteristics and noise distributions. In addition, we
visualize the derived categorization into tiles by means of images, showing that our
conducted minimization procedure of PAL-Tiling yields interpretable groupings.

1.1 Roadmap

In Section 2 we introduce our notation and review the work related to the three
research branches of Tiling, MDL, and Nonnegative Matrix Factorization, which
compound our method. After surveying these building blocks, we introduce our
optimization framework PAL-TILING in Sec. 3. We derive the proximal mapping
with respect to the proposed penalization of non-binary values, enabling the mini-
mization of the approximate Boolean matrix factorization error under convergence
guarantees. Therewith we derive the Ll-regularized minimization of the recon-
struction error by the algorithm PANPAL in Sec. 3.3. We formulate the encoding
via code tables in the form of a Boolean matrix factorization, which defines to-
gether with a suitable relaxation of this measure, derived in Sec. 3.4, the algorithm
PrivP. In Sec. 4, we compare our approach to related methods in various syn-
thetically generated settings and real-world data. Furthermore, we provide insight
into the algorithms’ understanding of noise based on images. Finally, we conclude
in Sec. 5.

2 Problem Definition and Building Blocks

We identify items Z = {1,...,n} and transactions 7 = {1,...,m} by a set of
indices of a binary matrix D € {0, 1}"*". This matrix represents the data, having
Dj; =1 iff transaction j contains item 7. A set of items is called a pattern. If the
pattern is a subset of a transaction, we say the transaction supports the pattern.

Throughout the paper, we often employ the function #; which rounds real to
binary values, i.e., 8;(z) = 1 for z > ¢ and 6;(x) = 0 otherwise. We abbreviate
0o.5 to 6 and denote with 6(X) = (6(X;;));: the entry-wise application of 6 to a
matrix X.

We denote matrix norms as || - || for the Frobenius norm and | - | for the entry-
wise 1-norm. These norms are equivalent for binary matrices X in the sense that
|X| = ||X]|*>. We use the short notation |X|_ = |[#(—X)| and |X|+ = |§(X)] to
separate the norm of negative and nonnegative entries of X. We often abbreviate
the notation of a matrix (z:j)1<i<n,i<j<m t0 (zi;)s; if the range of indices is clear
from the context. Correspondingly, we notate column vectors (z;);. The operator o
denotes the Hadamard product which multiplies two matrices of same dimensions
element-wise. Lastly, we remark that log denotes the natural logarithm.

2.1 Problem Definition

We seek sets of column-row selections which can be visualized as a formation of
blocks as exemplified in our introduction. The expectation that such a formation
exists is based on the assumption that the data D originates from a Boolean
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Fig. 2: An exact Boolean factorization using two tiles. The tiles are highlighted.

matrix product (Y XT). Here, it is important to understand that the thresholding
function 0 (defined above) suffices to map binary operations onto the Boolean
algebra where the addition corresponds to the logical conjunction, i.e., (0+1) =
(1 +0) = 1 and 6(1 + 1) = 1. This way, the product is also well-defined for
nonnegative real-valued matrices. For an exploration of non-canonical Boolean
matrix products, and what derives from them, see, e.g., (Miettinen 2015).

Let X be an n X r binary matrix and Y an m X r binary matrix. The prod-
uct (Y X T) specifies r column-row selections called tiles, one by each pair of
column vectors (X.s,Y.s). Thereby, we implicitly assume that each tile provides
information about co-occurrences of items and transactions. In practice, however,
one column vector may be equal to the zero vector or indicate only one item,
respectively a single usage of a pattern. We do not take these trivial column-row
selections into account and introduce the function r(-,-) to count the number of
valuable tiles 7(X,Y) = |{s : | X.s| > 1A|Y.s| > 1}| < r. In theory, we often assume
that r = r(X,Y) and in this case, we call r the rank of the tiling or factorization.
An example of a rank-2 factorization is depicted in Fig. 2. The vector X., indi-
cates the pattern which contains all items ¢ € 7 with X;s = 1. Likewise, the vector
Y.s marks the transactions which use pattern X.; to form the tile. Accordingly,
we refer to the matrix X as the pattern matriz and to Y as the usage matrix.
The name tile reflects its visualization as a single block matrix Y.s X T for suitably
rearranged columns and rows.

We state the informal problem to recover the latent factorization, which we
intend to approach in this paper, as follows.

Informal Problem Definition
Given a data matrix D € {0,1}"*" originating from the following process

1. Let X € {0,1}™*" be a rank r matrix, denoting r patterns.

2. For each transaction D;. choose a set of patterns S; C {1,...r}.
3. Construct Y € {0,1}™*" such that Y;s =1 < s € 5.

4. Let N € {—1,0,1}™*™ be the noise matrix satisfying

5. Set
D=0YX")+N. (1)

Find the factor matrices X and Y.
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Algorithm f(X,Y,D) Constraints C R
(N=D-0(YXT))

LTM r IN|=0 N

r-LTM —16(Y XT)| IN|- =0 {r}
HYPER+ [ X+ Y] IN|+ =0,|N|- <8 N

MAXENT _IGX.Y) 1] N

Ly(X,Y)

Asso frss(X,Y, D) 0 {r}

KrivpP, SLiM, SHRIMP fer(X,Y, D) IN|— =0 N

GROEI fer(X,Y, D) IN|-=0 {r}

PANDA flu(X,Y, D) {r}
MDL4BMF, NASSAU frxo(X,Y,D) 0 N<min{n,m}
MDL4BMF, PANDA+ fix(X,Y,D) 0 Ne<min{n,m}

Table 1: Overview of tiling cost measures and implementing algorithms. N<, de-
notes the set of natural numbers less than or equal to a.

Solving this problem is infeasible in practice as the data generation process is
not invertible. Therefore, an approachable surrogate problem is formulated: the
minimization of a function, which shall, together with suitable constraints on the
result space, indicate the quality of the derived model. In the following, we inspect
how three related research branches formulate and tackle such minimization prob-
lems, namely Tiling, the Minimum Description Length principle and Nonnegative
Matrixz Factorization.

2.2 Tiling

Tiling addresses the task to find binary matrices which minimize a given cost
measure in a restricted search space. Many cost measures have been formulated
with respect to tiling. Each one defines different criteria of what makes a set of
tiles suitable. We list the most important considerations in Table 1 according to
the following task formalization:

Tiling

Given a binary database D € {0,1}™*", a set of real-valued functions

c € C, a set of natural numbers R and a cost measure f.
Find a tiling
(gr(l}g)f (X,Y,D)

subject to ¢(X,Y, D) <0, ceC
X e{0,1}"", Y €{0,1}"™", reR

We see in Table 1 that many algorithms prohibit negative noise (|N|- = 0). We
call such tilings restrained, as the usage of patterns is restrained to the supporting
transactions.

Geerts et al (2004) consider the cost measure as a measure of interestingness
of patterns. In this setting, a tile is determined by its pattern because its usage is
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identified with all supporting transactions. This implicitly excludes negative noise
but enables the application of pattern-mining techniques in the algorithms LTM
and r-LTM.

Kontonasios and De Bie (2010) and Xiang et al (2011) argue that the inte-
gration of negative noise enables more succinct descriptions and makes the tiling
robust to noise. If negative noise is not allowed, every flip of a single bit in the
interior of a tile breaks it into two. Xiang et al (2011) propose with the greedy
algorithm HYPER+ to mine restrained tiles first and to combine them to larger
(noisy) tiles in a second step, as long as a specified amount of negative noise is
not exceeded. Kontonasios and De Bie (2010) propose the information theoreti-
cal regulation of noise. The algorithm MAXENT greedily selects the tile with the
highest information ratio among a set of input candidate tiles. The information
ratio puts the information content ICp(X,Y) in relation to the description length
L,(X,Y) of a tiling, given a maximum entropy distribution p over data matrices.
Both algorithms include negative noise only in a post-processing step and provide
no mechanisms to directly derive suitable unrestrained tiles.

Miettinen et al (2008) strive for direct minimization of the approximation error
under the umbrella term Boolean Matrix Factorization (BMF). They show that
the tiling of rank r which yields the minimum error frss(X,Y, D) = |D—0(Y XT)|
cannot be approximated within any factor in polynomial time (unless NP = P).
Accordingly, they propose a heuristic to solve this problem. Asso incrementally
creates 1 tiles by selecting a pattern first and minimizing the error subject to
the usage afterwards. Decisive for the quality of the returned factorization is the
choice of the rank r. To determine this parameter automatically, several algorithms
implement one key paradigm called Minimum Description Length (MDL).

2.3 The MDL Principle

MDL is introduced by Rissanen (1978) as an applicable version of Kolmogorov
complexity (Li 1997; Griinwald 2007). The learning task to find the best model
according to the MDL principle is given as follows:

Description Length Minimization
Given data D and a set of models M.
Find a model M € M for D which minimizes the description length

L(D,M) = L”(D, M) + L™ (M),

where L? (D, M) denotes the compression size of the database in bits
(using model M for the encoding) and L™ (M) is the description size
in bits of the model M itself.

Specifications of this task differ in the definition of the encoding which defines
the set of models M. Typical models for tilings are given by the factorizations
which satisfy the constraints

M={(X,Y)€{0,1}"" x {0,1}™*" | ¢(X,Y,N) <0VceC,recR}

An encoding which is successfully applied in the area of pattern mining and which
we discuss later in the context of tiling, uses code tables as proposed by Siebes et al
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(2006). The code table assigns optimal prefix-free codes to a set of patterns, such
that the code lengths can be calculated without realizations of actual codes. We
imagine the code table two-columned: itemsets are listed on the left and assigned
codes on the right. Such a dictionary from itemsets to code words can be applied
to databases similarly as code words to natural language texts. However, the code
usage is not as naturally defined as for words in a text. Patterns are not nicely
separated by blanks and the possibilities to disassemble a transaction into patterns
are numerous. Therefore, we require for every transaction the indication of its cover
by patterns of the code table. This is modeled by a function cover, which partitions
D;. into patterns of the code table.

Let CT = {(Xo,C5)|1 < o < 7} be a code table of 7 patterns X, together
with their assigned codes C. For any distribution P over a finite set {2, an optimal
set of prefix-free codes exists (Cover and Thomas 2006, Theorem 5.4.1) such that
the number of required bits for the code of x € 2 is approximately

L(code(x)) = —log(P(x)).

Desiring that frequently used codes are shorter in size, Siebes et al (2006) introduce
the function usage that maps a pattern to the number of transactions which use
it for their cover, i.e.,

usage(Xq) = {Xos € cover(CT,Dy.) | j € T}
The probability mass function over all itemsets X, in the code table is defined as

usage(Xs)

P(Xs) = .
(o) Z1gp§T usage(Xp)

(2)

This implies that L(Cy,) = —log P(Xs). The data matrix is encoded by a transaction-
wise concatenation of codes, denoted by the cover, i.e., transaction D;. is encoded
by a concatenation of codes C, with X, € cover(CT, Dj.). Therefore, code Cy
occurs usage(Xo) times in the encoded dataset. The size of the data description
is thus computed by

Lér(D,CT) =— Y usage(X,)-log(P(X,)).

1<o<T

The description of the model, the code table, requires the declaration of codes C,
and corresponding patterns X,. Code Co has a size of —log (P(X5)). A pattern
is described by concatenated standard codes of contained items. Standard codes
arise from the code table consisting of singleton patterns only, where the usage of
singleton {i} for ¢ € T is equal to the frequency |D.;|. In conclusion, the description
size of the model is computed as

LT = - Z (log(P(Xa)) + Z log (||DDI>> )

1<o<T 1€EX,
usage(Xy,)>0

Note that the function Lct originally uses the logarithm with base two. We im-
plicitly reformulate this description length by substituting with the natural log-
arithm. This is equivalent to multiplying the function by a constant which is
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negligible during minimization. In return, using the natural logarithm will shorten
the derivations in Sec. 3.4.

Siebes et al (2006) use a heuristic cover function for the algorithm KRrIMP
which employs a specified, static order on patterns. The cover function greedily
selects the next pattern in the order which covers items that are not covered yet.
This way, covering patterns must neither overlap nor cover more items than stated
by the transaction. KRIMP examines an input set of frequent patterns in another
static order, adding a candidate pattern to the code table whenever that improves
the compression size. Additionally, pruning methods are proposed to correct the
selection of patterns in the code table.

SLIM (Smets and Vreeken 2012) differs in its candidate generation, which is
dynamically implemented according to an estimated compression gain and depen-
dent on the current code table. This strategy typically improves the compression
size, but mainly reduces the amount of returned patterns. Still, the number of
considered candidates is extremely large in comparison to those who are accepted.
Time consumption is dominated by computing the usage for each evaluated can-
didate. SHRIMP (Hess et al 2014) exploits the indexing nature of trees in order to
efficiently identify those parts of the database which are affected by an extension
of the code table. Siebes and Kersten (2011) restrict with the algorithm GROEI
the code table to a constant number of patterns. They resort to a heuristic beam
search algorithm, but only for tiny datasets, the beam width parameter can be set
to a level allowing a reasonably wide enough exploration of the search space, or
else the run time explodes.

All these algorithms follow the heuristic cover definition of KriMP which pro-
hibits negative noise and tile overlap (we state the function fct and discuss the
specific relationship between the proposed encoding by code tables and tiling in
Sec. 3.4). Although the employment of code tables is originally motivated as a
methodology to obtain concise and compressing descriptions of the data, the en-
coding is quite wordy in comparison to the output of unrestrained tiling algo-
rithms, which we discuss in the following section. Nonetheless, attempts to revoke
the restraints of the tiling are not known to us.

2.4 Merging MDL and Tiling

MDL’s incorporated trade-off between model complexity and data fit is apt for
the determination of the factorization rank. Algorithms which determine the rank
according to the MDL principle implement a similar scheme, so far. The costs are
identified with the description length and in every iteration, the rank is increased
as long as this results in decreasing costs. For every considered rank, a factoriza-
tion (tiling) method is invoked, which usually extends the result from the former
iteration. The performance of this method depends on the choice of factorization
and encoding which determines the description length.

Lucchese et al (2010) propose an encoding as it is known for sparse data rep-
resentations, describing a matrix only by the positions of ones. Consequently,
the model is described with LM ((X,Y)) = |X| + |Y| bits and the data with
LP(D,(X,Y)) =|D — 6(YXT)| bits, up to a multiplicative constant. The result-
ing cost function is denoted as fi1(X,Y,D) = |D — 0(YX7T)| + |X| + |Y]|. The
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algorithm PANDA uses a factorization method which adds a tile to the current
tiling in a two stage heuristic, comparable to HYPER+-.

Miettinen and Vreeken (2014) argue that the encoding used in PANDA is too
coarse. They investigate multiple encodings, applying ASSO to incrementally in-
crease the factorization rank. Their best-performing encoding is called Typed XOR
DtM encoding. This is based upon the description of n-dimensional binary vectors
by number and distribution of ones. We refer to the Typed XOR DtM description
length as frxp and to the corresponding algorithm as MDL4BMF. The experimen-
tal evaluation suggests that MDL4BMF’s rank estimation is accurate in a setting
with moderate noise, i.e., less than 15%, and moderate number of planted tiles,
i.e., less than 15. It seems to have a tendency to underfit, as opposed to PANDA,
which returns sometimes ten times more tiles than planted.

On the other hand, the framework of PANDA can be applied with an arbitrary
cost measure. Lucchese et al (2014) enhance the algorithm PANDA to a faster ver-
sion PANDA+ and evaluate the ability to detect a planted tiling in relation to
different cost measures and algorithms. In their evaluation of synthetically gener-
ated datasets with less than 10% equally distributed noise, PANDA+ using Typed
XOR costs frx is outperforming any other choice. The performance is explained
with the objective of PANDA+’s factorization method, which aims at minimizing
the costs, in contrast to AssO, minimizing only the noise.

Another algorithm which tries to incorporate the direct optimization of the
MDL-cost measure is NAssAU (Karaev et al 2015). Remarking that the formerly
proposed algorithms do not reconsider tiles mined at previous iterations, NASSAU
refines the whole tiling every few steps in relation to the cost measure. Still, the
incorporated factorization method minimizes solely the factorization error. The
experiments focus on a setting where negative noise is prevalent. In this case,
differences to MDL4BMF are often hard to capture while NASSAU typically outper-
forms PANDA+.

2.5 Nonnegative Matrix Factorization

The Boolean factorization of Eq. (1) has a popular relative called Nonnegative
Matrix Factorization (NMF). Given a nonnegative, real valued matrix D € R"*"
and a rank r € N, the goal is to recover nonnegative factors X € Ri” and
Y € R such that VX T ~ D. To find the “correct” factorization, again, several
objective functions and constraints are proposed. Most commonly, the residual
sum of squares (RSS) is minimized

min F(X,Y) = HD—YXTH2 (3)
XY ) '

The function F' is nonconvex, but convex in either X or Y, if the other argument
is fixed. That makes it suitable for the Gauss-Seidel scheme, also known as block-
coordinate descent or alternating least squares, an alternating minimization along
one of the matrices while the other one is fixed. That is, a sequence (X, Yy) is
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created by

Xk+1 € arg minF(X, Yk)
X

Yk+1 € arg min F(Xk+1, Y)
Y

However, finding a minimum in every iteration is computationally intensive. Thus,
existing algorithms for NMF approximate the scheme of Eq. (4) in several ways (Wang
and Zhang 2013). Often, the minimization step is replaced by a single gradient de-
scent update.

NMF is originally introduced by Paatero and Tapper (1994) under the name
Positive Matrix Factorization. It received much attention since the publication of
the easily implementable multiplicative update algorithm by Lee and Seung (2001).
Their intuitive explanation of coherence between the nonnegativity constraints and
the resulting parts-based explanation of the data (Lee and Seung 1999), emphasizes
the interpretability of the results.

Although initially the difference between NMF and clustering was emphasized
(Lee and Seung 1999), further research affirms inherent clustering properties (Li
and Ding 2006). In this context, columns of X equate cluster centroids and corre-
sponding columns of Y indicate cluster membership tendencies. Restricting Y to
a binary matrix makes the memberships definite and the orthogonality constraint
YTY = I enforces unique cluster assignments. This factorization task is actually
equivalent to k-means (Ding et al 2005, 2006; Bauckhage 2015). If the data ma-
trix is binary, a binary factorization is also desirable, at least to get interpretable
results for the cluster centroids (Li 2005). In this way, the factorization can be
read as a clustering of items, or by using the transposed product, as a clustering
of transactions. This is also known under the terms biclustering, co-clustering or
subspace clustering.

To the best of our knowledge, Zhang et al (2007) are the only ones approaching
the task of biclustering in conjunction with alternating minimization, the standard
procedure to solve NMF. They propose two methods: the first one uses gradient
descent updates with the longest step size preserving nonnegativity of the factor
matrices and integrates the penalization of non-binary values into the minimization
of the factorization error. As penalizing function, they choose the Mexican hat
function w(z) = %(2* — 2)*. The second method is designed to find the threshold
at which nonnegative factor matrices might be rounded best to binary matrices.

Although these methods have several drawbacks (the former lacks a conver-
gence guarantee and the latter applies a costly backtracking linesearch), the re-
sults are very promising in comparison to common greedy biclustering algorithms.
However, this branch of research is considered to be substantially different from
its formulation in Boolean algebra (Miettinen and Vreeken 2014; Lucchese et al
2014). Indeed, the numerical optimization of the binary factorization is not easily
adopted for multiplications in Boolean algebra 6(Y' X 7. 0 has a point of discon-
tinuity at 0.5. Equally, all proposed cost measures in Table 1 are not continuous
for real valued matrices with entries in [0, 1].
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3 Merging Tiling, MDL, and NMF

We wish to find a way out of the greedy minimization of tiling cost measures
and ask to which extent the theory behind popular NMF optimization methods
may be applied to Boolean matrix factorizations. In conclusion, we propose an
adaption of the Gauss-Seidel method to minimize a suitable relaxation of tiling
cost measures. Similar to the thresholding algorithm of Zhang et al (2007), the
matrices are rounded according to the actual cost measure afterwards. Moreover,
we incorporate the determination of the factorization rank, utilizing that the cost
measure may select fewer tiles than offered.

With our ambition to adapt the alternating minimization for Boolean matrix
factorization, we face two problems: First, as mentioned above, the use of Boolean
algebra induces points of discontinuity. In particular, the gradient of the cost
measures does not exist at all points which hinders the application of standard
gradient descent methods. Second, many tiling cost measures are not convex in X
or Y, not even if the other argument is fixed, which is a necessary condition to
prove the convergence of the Gauss-Seidel scheme.

To begin with, we inspect how NMF (Eq. (3)) and BMF deal with overlapping
tiles. This is the crucial point where Boolean algebra diverges from elementary al-
gebra. An illustration of a binary data matrix D consisting of two overlapping tiles
and its approximation by a NMF is shown in the top two equations of Fig. 3. We
see that the factors contain values smaller than one at entries which are involved in
overlapping parts. With this, overlapping sections are equally well approximated
as non-overlapping components. The matrices D4 and Dp in Fig. 3 show the
resulting approximations when the nonnegative factor matrices are rounded to
binary matrices. We find that the reconstruction error is largest when the binary
matrices are multiplied in elementary algebra (matrix D4 in Fig. 3). This illus-
trates how binary matrix factorization penalizes overlapping patterns, a feature
which is desirable in clustering when clusters are not allowed to overlap. Similarly,
NMF would return less overlapping factors at a higher factorization rank. In this
case, however, the original data matrix is exactly reconstructed by the Boolean
product of thresholded factor matrices (matrix Dp in Fig. 3). That is why we con-
sider the minimization of a relaxed cost measure with respect to the elementary
algebra whereby the factorization rank is increased stepwise. An evaluation of the
actual cost measure in Boolean algebra on the rounded matrices decides whether
the rank shall be increased or not.

This leads us to the second concern, the minimization of a possibly not even
partially convex objective. Bolte et al (2014) extend the application of the Gauss-
Seidel scheme to such a larger class of functions with the Proximal Alternating
Linearized Minimization (PALM). This technique focuses on objective functions
which break down into a smooth part F : R™*" x R™*" x R™*™ — R and a
nonsmooth component ¢ : {X € R™*™|m,n € N} = (—o0, o0]

F(X,Y,D)+ ¢(X) + ¢(Y). (5)

Thereby, no convexity assumptions are made on F' and ¢. Furthermore, the func-
tion ¢ may return oo, which can be used to model restrictions of the search space,
e.g., the non-negativity constraint of NMF. The method performs an alternating
minimization on the linearized objective, substituting F' with its first order Taylor
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Fig. 3: Approximation of a binary matrix D with two overlapping tiles (top) apply-
ing NMF (second from above) and the factorizations resulting from thresholding
the factor matrices to binary matrices in elementary algebra (second from below)
and Boolean algebra (below). Tiles are highlighted.

approximation. This is achieved by alternating prozimal mappings from the gra-
dient descent update with respect to F, i.e., the following steps are repeated for
1<k<K:

Xk+1 :prOXak¢(Xk —akVXF(Xk,Yk,D)); (6)
Yi+1 = proxg, ,(Ye — B Vy F(Xg41, Yk, D)). (7)

The proximal mapping of ¢, prox, : dom(¢) — dom(¢)! is a function which
returns a matrix satisfying the following minimization criterion:

. 1
prox,(X) € ar%{r*mn {§||X — XM+ ¢(X*)} .

Loosely speaking, the proximal mapping gives its argument a little push into a
direction which minimizes ¢. For a detailed discussion, see, e.g., (Parikh and Boyd
2014). As we can see in Egs. (6) and (7), the evaluation of this operator is a
base operation. Similarly to the alternating minimization in Eq. (4), finding the
minimum of the proximal mapping in every iteration by numerical methods is
infeasible in practice. Thus, the trick is to use only simple functions ¢ for which
the proximal mapping can be calculated in a closed form.

The variables ay and B in Egs. (6) and (7) are the step sizes, which are
computed under the assumption that the partial gradients Vx F and Vy F' are
globally Lipschitz continuous with moduli My, r(Y) and My, r(X), i.e.,

[VxF(X1,Y,D) = VxF(X2,Y, D)|| < My, r(Y)[| X1 — X

1 dom(¢) is the domain of ¢
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for all X1, X2 € R™*" and similarly for Vy F. If F' computes the RSS as stated in
Eq. (3), the Lipschitz moduli are given as

My, r(Y)=|YYT|, My, r(X)=|XX"|.

The step sizes are computed as

1 1
- YMyr(Ye)' Pr= YMvy r(Xkt1)’

where v is a constant larger than one. The parameter v ensures that the step size is
indeed smaller than the inverse Lipschitz constant, which is required to guarantee
the convergence. Note that the step sizes are antimonotonic to 7, i.e., if v = 2
then the step sizes are almost half as small as they could be. Assuming that the
infimum of F' and ¢ exists and ¢ is proper and lower continuous, PALM generates
a nonincreasing sequence of function values which converges to a critical point.

Ak

3.1 PAL-Tiling: General Framework

We employ the optimization scheme PALM to minimize a specified relaxation of
a tiling cost measure. Adapting to the terminology of Eq. (5), we assume that for
a factor p > 0 and regularizing function G the relaxation has the form

F(X,Y,D) = 4D - YXT| 4 JG(X,Y). (5)

Here the multiplication by one half refers to the traditional formulation of the
residual sum of squares in Eq. (3), which shortens the formulation of gradients.
The regularizing function G is supposed to be real valued and smooth with partial
gradients which are Lipschitz-continuous with moduli My, ¢(X) and Mv ,g(Y).
That is,

[VxG(X1,Y) = VxG(X2,Y)|| < My,a(Y)|| X1 — X2,

and similarly for Vy G. It follows from the triangle inequality that the Lipschitz
moduli of the partial gradients of F' are given by the sum

1
My p(Y)=pl|lYYT|| + §MVXG(Y)

1
My, r(X) = pl| XX + My G (X).

We use the function ¢, which is integrated into the objective function as stated in
Eq. (5), to limit the matrix entries to the interval [0, 1], i.e., X € [0,1]"*" and Y €
[0,1]™*". As discussed by Zhang et al (2007), this prevents an imbalance between
the factor matrices in which one matrix is very sparse and the other very dense.
Apart from that, we wish that the relaxed optimization returns factor matrices
which are as close to binary matrices as possible. Therefore, we incorporate penalty
terms for non-binary matrix entries in the function ¢. Choosing ¢ as a proper and
lower semicontinuous function (to be defined in Sec. 3.2), the objective meets
the requirements of PALM to guarantee the convergence to a critical point in a
nonincreasing sequence of iterative function values.
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Algorithm 1 Proximal Alternating Linearized Tiling
1: function PAL-TiLING(D, A,, K, T,y = 1.00001)

22 (X, Yk) + (0,0)

3: for r € {A,,24,,34,,...} do

4: (Xo,Y0) + INCREASERANK (X, Yi, Ar) > Append A, random columns
5: for k€ {0,...,K — 1} do

6: ayt  yMy (Vi)

7 Xk+1 (—pI‘OXak¢ (Xk—O(kVXF(Xk,Yk;,D))

8: ,3];1 <_'YMVyF(Xk+1)

9: Yk+1 < prox5k¢ (Yk — ﬁkVyF(Xk+1, Yk, D))

10: end for

11: (X,Y) < argmin{ f(0z(Xk),0y(Yk))|z,y € T} > Threshold to binary matrices
12: if r —r(X,Y) > 1 then

13: return (X,Y)

14: end if

15: end for
16: end function

We sketch our method, Proximal Alternating Linearized Tiling (PAL-TILING),
in Algorithm 1. A data matrix D, rank increment A,, maximum number of it-
erations K, a set of threshold values T' and the parameter -, having a default
value of v = 1.00001, are the input of this algorithm. For every considered rank,
we perform the proximal alternating linearized minimization of the relaxed ob-
jective (line 5-10). After the numerical minimization of the relaxed objective F,
the matrices Xx and Yg, having entries between zero and one, are rounded to
binary matrices X and Y with respect to the actual cost measure f (line 11). If the
rounding procedure returns binary matri