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1 Introduction

1 Introduction

1.1 Motivation

Applications of machine learning in biomedical research has been an important is-
sue in computer science since the 1960s. The complexity of data to be analyzed has
been increasing dramatically since more accurate medical approaches and advanced
techniques are used [Morik 2010]. Since nowadays there are tools (more details in
Chapter 2) that allow us to analyze genetic expression data of patients suffering
under various diseases, finding genetic biomarkers has become an useful approach to
predict patients’ prognosis. Current researches for neuroblastoma focus on finding
biomarkers for neuroblastoma cancer to understand its nature [Schramm et al. 2009;
Oberthuer et al. 2010; Takita et al. 2011; North et al. 1997]. Since the considered
data is very high dimensional, different methods of feature selection can be applied
to reduce the number of dimensions [Ng 2004; Zou and Hastie 2003; Schowe 2011].
Feature selection filters those variables which contain no or less important informa-
tion concerning the learning task. Considering this data we are aiming in comparing
two different approaches of feature selection in order to distinguish a better approach
to decrease the number of attributes and increase the prediction accuracy on the
neuroblastoma data.

1.2 Aim of this thesis

In this thesis we focus on linear models with regularization terms to keep solutions
sparse. In course of this thesis we implement two operators for RapidMiner, an
open source project by Rapid-I1, which provides data mining and machine learning
procedures. To achieve sparsity it is possible to find important features and filter
out unimportant ones. Since our data contains exon expression values which can be
sorted by genes they belong to, this can be done with the group `1 regularizer. But
as we do not know for sure whether grouping exons by genes is an optimal form
to detect linear model with high prediction rate, we compare group `1 to another

1http://rapid-i.com/
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type of penalization, elastic net. We intend to compare performance of two models
trained with these regularization terms and consider some of the features selected
in these processes.

1.3 Structure

First in Chapter 2 we mention some prior information about neuroblastoma cancer
and describe the data set in more details. In Section 3.1 we focus on the theory
behind linear models. In Section 3.2 we explain regularization terms to be used in
this thesis. Two optimization methods are introduced in Section 3.3 to solve the
problem as described before. In Section 4.1 we talk in more details about both
group `1 and elastic net operators which are implemented for RapidMiner. The
evaluation procedure of obtained models and analysis of selected features can be
found in Section 4.2.

© Alexey Egorov 2
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2 Background

2 Background

As we already described our motivation in Section 1.1 the neuroblastoma study gives
us an interesting opportunity to exploring cancer and its genetic origin. Because most
of the patients are infants or children they don’t have any preexisting/prior diseases
or conditions (e.g. smoking or alcohol). Hence this situation gives us a possibility of
finding and analyzing biomarkers of neuroblastoma and cancer at all without any
further influences on its genetic expression.

2.1 Neuroblastoma cancer

Neuroblastoma is the most common tumor in childhood. It accounts for 8% of all
childhood cancers and 15% of pediatric oncology deaths [Oberthuer et al. 2010]. For
most infants the disease regresses completely even without any therapy and it only
spreads to regional lymph nodes, bone and bone marrow. But on the other hand
older patients (older than 1 year old) frequently have metastatic disease despite all
intensive therapies. Thus infants have even better prognosis with the presence of
metastatic disease [Brodeur 2003].
With the help of divergent genetic and biochemical analysis one was able to dis-
tinguish several clinical risk factors as age at diagnosis or stage and molecular risk
factors as histology or MYCN amplification. [Schramm et al. 2009]. MYCN ampli-
fication turned out to be a powerful predictor of a poor prognosis and “accordingly
patients with MYCN-amplified tumors receive a more intense treatment” [Schramm
et al. 2005]. Furthermore different other alterations or abnormal patterns of gene
expression are giving some hints about outcome and prognosis. Hence there are sev-
eral reports about genetic predisposition for neuroblastoma [Schramm et al. 2005;
Oberthuer et al. 2006; Chen et al. 2008; Asgharzadeh et al. 2006]. Unfortunately they
seemed to not be consistent about where the locus lies and which gene deletions or
rearrangements are involved in this.

© Alexey Egorov 3
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2.2 Dataset

2.2.1 Technology

DNA chip technology or microarray was introduced in the 80’s and gave scientists
the ability of more detailed insight into genetic information of human cells. Kurian
et al. [1999] states that those high-density DNA arrays are capable of analyzing
thousands of genes simultaneously. Furthermore by using this method global gene
expression can be compared in two populations, for example in a “normal” versus a
melanoma cell line.
Affymetrix provides novel whole-transcript expression analysis, called GeneChip, de-
scribed in more details by Affymetrix2. It enables researchers not only to detect the
level of expression, but also to determine precisely what is being expressed, including
alternative isoforms or genomic deletions. Furthermore it offers exon- and gene-level
expression analysis in a single experiment and thus whole-transcript expression anal-
ysis can be used to detect and analyze alternative splicing and differential expression
of each exon within a gene.

2.2.2 Data structure

Here we consider dataset derived from GeneChip that has been described in previous
section. Data used here is originally from two different sources: one part is taken
from study center of the German neuroblastoma study group [Schramm et al. 2009];
another part was submitted by R2, a microarray visualization platform developed at
the department of human genetics in the Academic Medical Center in Amsterdam.3

After preprocessing the total exon array expression data consists of 215525 exon
probesets. The dataset contains patient related information that is being used for
classification. Data for each patient has a unique ID, label with stages {1, 2, 3, 4, 4s}
according to the INSS (International Neuroblastoma Staging System) and measured
exon data. Each exon has therefore measurements for all 257 patients in this study
and can be identified by its 7-digit ID. It is rather difficult to specify good models
within this very high dimensional space. Thus our aim is to reduce the number of
dimensions to achieve good prognosis prediction.

2www.affymetrix.com/promotions/wtexpression/wtexpression.affx
3http://r2.amc.nl/
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Figure 2.1: Computed rank correlation between each gene vector and the response
vector by the extended Somers’ D statistics. After filtering out genes
with |D| < 0.3 approximately 30% of genes are left.[Lee 2012]

2.2.3 Preparation

As a preparation step we filter some of genes based on results of extended version
of Somers’ D statistics introduced in Newson [2006]. Somers’ D means that if you
have predictor variable X and outcome variable Y , you may estimate DXY as a
performance indicator of X as a predictor of Y . Since this statistics fits our situation,
we perform following steps:

1. We compute rank correlation between each gene vector (using gene-level sum-
mary data) and the response vector (survival time, with possible right-censoring)
by an extended version of Somers’ D statistic

2. The scores D varies in [ -1,1]. A threshold of |D| < 0.3 is then used and filteres
around 70% of the range of the genes (Figure 2.1).

3. Exons that belong to the chosen genes (70%) are removed.

This process reduced the dataset from 215525 to 31054 exons and filtered exons that
suppose to have very low correlation with a label.
The most often used clinical features are stages of disease ({1, 2, 3, 4, 4s}), the age of

© Alexey Egorov 5
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the patient at diagnosis, survival time and the site of the primary tumor. We used
survival time as mentioned above for filtering some features. According to INSS
patients with stages {1, 2, 4s} are low risk while {3, 4} are high risk. As you can see
on Figure 2.2 not all patients in stage 4 die and around 40% of them survive longer
than 6000 days of study. Oberthuer et al. [2010] questioned INSS stages and were able
to improve classification. From this point of view one is interested in classifications
between these stages and especially stage 4 may have to be splitted into several
subgroups. But due to lack of patients we will not leave out any patients in this
research (like for classification between stage 3 and 4 while leaving out patients
with stages {1, 2, 4s}). Consequently we will try to predict low risk group (stages
{1, 2, 4s}) against high risk group (stages {3, 4}) at an expense of slightly lower
accuracy as our main goal is still to compare two approaches which we will introduce
later.

Figure 2.2: Kaplan Meyer plot of the overall survival. In this plot stage 4s is called
stage 5. Vertical marks indicate a loss. [Lee 2012]

© Alexey Egorov 6
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3 Method

To achieve our aim of learning a good prediction model for neuroblastoma stud-
ies we are going to use logistic regression as a cost function that we will discuss
in more details in Section 3.1. In order to reduce number of features we are go-
ing to add two different regularization terms to the cost function, elastic net and
group `1. We will describe them and solution of created optimization problems in
Sections 3.2 and 3.4 respectively.

3.1 Logistic regression

Linear regression solves the following problem set. We consider for all N patients
{(xi, yi)}Ni=1 where yi ∈ R is the label, xi = (x̂i, 1) ∈ Rp is a set of p − 1 features
x̂i ∈ Rp−1 and 1 is the intercept for the optimization problem. With a linear function
one can describe the dependency of yi and xi:

f(xi) = w[1]xi[1] + w[2]xi[2] + · · ·+ w[p]xi[p]

=
p∑
j=1

w[j]xi[j] .

where zi[j] means j-th element in the i-th vector z. Using this function we can easily
estimate best fitting solution for w by minimizing following equation:

min
w∈Rp

N∑
i=1

(yi − f(xi))2 .

This estimation provides us w. As we want to compare probabilities of label yi for
some certain value, the function mentioned above is not appropriate. Instead we
need a model that gives us posterior probabilities of the classes via linear functions
that map values to an intervall [0, 1] [Hastie et al. 2003, Chapter 4.4]. The sigmoid
function has such properties as one can see in Figure 3.1. Considering function f(x),
sigmoid function h is described as followed:

h(f(x)) = 1
1 + e−f(x) . (3.1)

© Alexey Egorov 7
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Figure 3.1: Sigmoid function with both negative (a) and positive (b) exponent.

Using the above sigmoid function it is possible to determine the probability of the
i-th label obtaining the value yi: P[Yi = yi]. To simplify the equation in our case
we will use binary labels such as already suggested in Section 2.2.3. We summarize
low-risk stages {1, 2, 4s} to label −1 and high-risk stages {3, 4} to label +1. This
leads us to following equations:

P[Yi = +1] = 1
1 + e−f(x) ,

P[Yi = −1] = 1− 1
1 + e−f(x) = e−f(x)

1 + e−f(x) = 1
1 + ef(x) .

Thus we can summarize it to

P[Yi = yi] = 1
1 + e−yif(xi)

. (3.2)

The log-likehood for N observations L(w) =
∑N
i=1 logP[Yi = yi] can be used to

estimate w more precisely. In order to achieve a good estimation L(w) is maximized
over w:

max
w∈Rp

L(w) = max
w∈Rp

N∑
i=1

log
( 1

1 + e−yif(xi)

)

= max
w∈Rp

−
N∑
i=1

log(1 + e−yif(xi))

= − min
w∈Rp

N∑
i=1

log(1 + e−yif(xi)) . (3.3)

This convex problem is ill-posed if p is much larger than N . Since in case of this
research there are 31054 dimensions (exons), we introduce regularization terms to
reduce number of dimensions in the next section.

© Alexey Egorov 8
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3.2 Regularization terms

As described in Chapter 2 number of dimensions in biological data we are analyzing
is much larger than number of examples resulting in an effect so called the “curse
of dimensionality” that was coined by Bellman in 1961 [Hastie et al. 2003, Chapter
2.5]. Thus a subset of features should be found that is able to produce a model
with low prediction error and good performance. For this purpose there is LASSO
approach, a shrinkage method based on `1, that produces sparse solutions [Hastie
et al. 2003, Chapter 3.4.2]. Another penalization term `2 is used in ridge regression
and it provides coefficients for every variable [Hastie et al. 2003, Chapter 3.4.1].
λ > 0 is used as a tuning parameter.

`1: λ
p∑
j=1
|w[j]| = λ‖w‖1 `2: λ

p∑
j=1

(w[j])2 = λ‖w‖22 .

Choosing higher values for λ sets some coefficients exactly to zero in case of `1.
Hence for this work `1 is a more appropriate choice than `2 to reduce the number of
dimensions.
Nevertheless given our biological data of thousands of exons we want to consider
them in groups as we know the mapping of exons to genes before the splicing process.
Therefore `1 can set some of exons of one gene to zero while setting some other exons
of the same gene to non-zero values. As we know which exons belong to certain genes
one can consider “grouped lasso” as described in Hastie et al. [2003, Chapter 3.8.4].
First every exon is represented as elements xi[j] of the vector xi with 1 ≤ i ≤ N and
1 ≤ j ≤ p. Furthermore we define S as a collection of sets of indices {1, 2, . . . , p}
where each set s ∈ S corresponds to a group defined by a gene. Every exon belongs
consequently to a certain set s where |s| is the size of s. For all h = 1 . . . |s| for some
set s we define

w[s][h] = w[j[h]] with j[h] ∈ s and 1 ≤ j[h] ≤ p (3.4)

Using Definition (3.4) we can define group `1 regularization

Group `1: λ
∑
s∈S
‖w[s]‖2 .

The idea of setting groups of related exons to zero is be compared to another reg-
ularization method, elastic net. Zou and Hastie [2005] introduces it as a linear
combination of `1 and `2:

Elastic net: λ1‖w‖1 + λ2‖w‖22

© Alexey Egorov 9
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where λ1 > 0 and λ2 > 0. Elastic net selects variables with `1 and encourages highly
correlated features to be selected together with `2. For that reason one may not
need any prior knowledge of grouping. This concept is compared on the real data to
group `1 and the results are discussed in Section 5.

3.3 Optimization

In Equation 3.3 we maximized log-likelihood to distinguish optimal solution for
logistic regression. After introducing two regularizations terms in Section 3.2 we
append them to the consisting optimization problem. This way we have

F1(λ) = − min
w∈Rp

N∑
i=1

log(1 + e−yif(xi)) + λ
∑
s∈S
‖w[s]‖2 , (3.5)

F2(λ1, λ2) = − min
w∈Rp

N∑
i=1

log(1 + e−yif(xi)) + λ1‖w‖1 + λ2‖w‖22 . (3.6)

In the following two optimization approaches are presented and compared with re-
spect to the Equations (3.5) and (3.6).

3.3.1 Stochastic gradient descent (SGD)

One of the wide spread approaches is stochastic gradient descent (SGD) suggested in
50’s [Robbins and Monro 1951; Kiefer and Wolfowitz 1952]. For ease of explanation
let us define φ(w) = min

w
L(w) + R(w) where L(w) =

∑N
i=1 log(1 + e−yif(xi)) is loss

function and R(w) is one of regularizers for group `1 or elastic net. Our aim is to
find best fitting weight vector for min

w
φ(w). There are two conditions for using SGD:

w ∈ W , W ⊂ Rp while W should be convex and compact (Appendix). SGD as an
iterative approach recieves first estimated “guess” of the weight vector and works for
M > 0 iterations. With knowledge of k-th estimation of w one can compute wk+1

by solving the following minimization problem:

wk+1 = arg min
w∈W

{〈gk, w − wk〉+ ηk
2 ‖w − wk‖

2
2} .

where gk ∈ ∂φ(wk), ηk =
√
k
θ for some θ > 0 given and 0 ≤ k ≤ M . SGD has a

disadvantage of treating loss function and regularization term as one loss function.
Thus in case of nondifferentiable regularization terms like group `1 SGD is hardly
generating any sparse solution we aimed to get by regularization.

© Alexey Egorov 10
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3.3.2 Regularized dual average (RDA)

Another approach which fits for our minimization problem better was introduced
in Xiao [2010]. It is called regularized dual averaging (RDA). It can be seen as
SGD with some improvements. First we summarize Equations (3.5) and (3.6) as
min
w
L(w) + R(w) where L(w) =

∑N
i=1 `i(w) is a total differentiable loss function

with `i(w) = log(1 + e−yif(xi)) and R(w) is nondifferentiable regularizer R(w) =
λ
∑
s∈S ‖w[s]‖2 for group `1 and R(w) = λ1‖w‖1 + λ2‖w‖22 for elastic net. Some

differentiable regularizer can be included into `i(w) for ease of notice. RDA calculates
stepwise next better fitting solution in a form

wk+1 = arg min
w∈Rp

{〈ḡk, w − w1〉+R(w) + αk
2 ‖w − w1‖22}

where ḡk = 1
k

∑k
j=1∇`j(w), 0 ≤ k ≤ M and αk = θ′

√
k
for some constant θ′ >

0. Introducing the term R(w) into the calculation of the next step leads to no
loss of sparsity in contrast to SGD and therefore we will apply this method to
optimize (3.5) and (3.6).

Algorithm 1 RDA optimization as used for elastic net
Input:

• nonnegative and nondecreasing sequence {αk}

Initialize: set w1 = arg min
w

‖w‖22 = 0 and ḡ0 = 0
for k=1,2,3,... do

1. Given a sample bk ∈ {1, 2, . . . , N} compute a subgradient gk ∈ ∂`bk(wk)

2. Update the average sub gradient:

ḡk = k − 1
k

ḡk−1 + 1
k
gk

3. Compute the next weight vector:

wk+1 = arg min
w

{
〈ḡk, w〉+R(w) + αk

2 ‖w‖
2
2

}
with R(w) is a regularizer.

end for

© Alexey Egorov 11
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3.4 RDA solution

In previous section we introduced RDA solving optimization problems with non-
differentiable functions/regularizers in contrast to SGD. Algorithm 1 summarizes
RDA. In the following we present more detailed solutions for logistic regression with
group `1 and elastic net respectively relating to RDA process. In both cases we
consider some iteration k of RDA process as defined in Section 3.3.2. Although we
concentrate on explaining how to compute next estimation of the weight vector for
the following RDA iteration, it is only guaranteed that average over all found weight
vectors

w̄k = 1
k

k∑
d=1

wd

is converging against the optimal solution [Xiao 2010, Section 4]. Thus we use w̄k
for prediction purposes and to find manifold (more details in Section 3.4.3).

3.4.1 Elastic net solution

Based on a closed-form solution for `1-RDA method suggested by Xiao [2010, Ap-
pendix A] we split a p-dimensional problem into p of 1-dimensional problems:

min
wk[j]∈R

gk[j]wk[j] + λ1|wk[j]|+ λ2wk[j]2 + αk
2 wk[j]2

with j ∈ 1 . . . p, λ1 > 0, λ2 > 0 and αk = θ′
√
k
for some constant θ′ > 0.In order to

find a solution we build a derivative and consider the optimality condition:

gk[j] + λ1ψ + ρ wk[j] 3 0

where ρ = 2λ2 + αk and ψ is the subdifferential for |wk[j]| that can be described as
following for three different cases:

∂|wk[j]| =


{ψ ∈ R| − 1 ≤ ψ ≤ 1} if wk[j] = 0,
{1} if wk[j] > 0,
{−1} if wk[j] < 0.

After considering these three cases in detail (see Xiao [2010, Appendix A]) we achieve
the following closed-form solution for each wj :

wk[j] =

 0 if |gk[j]| ≤ λ1,
−1
ρ(gk[j]− λ1 sgn(gk[j])) otherwise

© Alexey Egorov 12
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where gradient gk[j] with 1 ≤ j ≤ p is defined as followes:

gk[j] = ∂fk
∂w[j] (wk[j]) = ∂ log(1 + e−yik

∑p

m=1 xik [m]wk[m])
∂w[j] (wk[j])

= e−yik
∑p

m=1 xik [m]wk[m]

1 + e−yik
∑p

m=1 xik [m]wk[m]
(−yik) xik [j]

= −yik
1 + eyik

∑p

m=1 xik [m]wk[m]
xik [j].

3.4.2 Group `1 solution

For group `1 we use the same approach suggested by Xiao to solve the optimization
problem with `1 regularizer. This time the situation is slightly different. We use
the same notation as defined in Section 3.2. Then we can split the p-dimensional
problem into |s|-dimensional subproblems where |s| is the size of s:

min
w

[s]
k
∈R|s|
〈g[s]
k , w

[s]
k 〉+ λ‖w[s]

k ‖2 + αk
2 ‖w

[s]
k ‖

2
2

Thus to calculate each of the elements’ values we consider optimality criterion

g
[s]
k [v] + λ

w
[s]
k [v]
‖w[s]

k ‖2
+ αkw

[s]
k [v] = 0

with v = 1 . . . |s|. After some transformations we first achieve

w
[s]
k [v]

(
λ

‖w[s]
k ‖2

+ αk

)
= −g[s]

k [v]

w
[s]
k [v] = −

(
λ

‖w[s]
k ‖2

+ αk

)−1

g
[s]
k [v] (3.7)

As we know the following definition

‖w[s]
k ‖

2
2 =

|s|∑
i=1

(w[s]
k [v])2 (3.8)

we apply the knowledge from (3.7) and have

‖w[s]
k ‖

2
2 =

|s|∑
i=1

(
λ

‖w[s]
k ‖2

+ αk

)−2

(g[s]
k [v])2

=
(

λ

‖w[s]
k ‖2

+ αk

)−2 |s|∑
i=1

(g[s]
k [v])2 (3.9)
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Taking the square root of (3.9) we have

‖w[s]
k ‖2 =

(
λ

‖w[s]
k ‖2

+ αk

)−1

‖g[s]
k ‖2 (3.10)

After multiplying
(

λ

‖w[s]
k
‖2

+ αk

)
on both sides we have

‖w[s]
k ‖2

(
λ

‖w[s]
k ‖2

+ αk

)
= ‖g[s]

k ‖2

⇒ λ+ αk‖w
[s]
k ‖2 = ‖g[s]

k ‖2

⇒ ‖w[s]
k ‖2 = ‖g

[s]
k ‖2 − λ
αk

(3.11)

If ‖g[s]
k ‖2 > λ, then ‖w[s]

k ‖2 > 0 and we deduce from (3.7) and (3.11)

w
[s]
k [v] = −

(
λ

‖g[s]
k
‖2−λ
αk

+ αk

)−1
g

[s]
k [v] with ‖g

[s]
k ‖2 − λ
αk

> 0

= −
(

λαk

‖g[s]
k ‖2 − λ

+ αk

)−1
g

[s]
k [v]

= −
(
λαk + αk(‖g

[s]
k ‖2 − λ)

‖g[s]
k ‖2 − λ

)−1
g

[s]
k [v]

= −‖g
[s]
k ‖2 − λ
αk‖g

[s]
k ‖2

g
[s]
k [v]

= −
1− λ

‖g[s]
k
‖2

αk
g

[s]
k [v]

Otherwise in case of ‖g[s]
k ‖2 ≤ λ we set all the values of a group s to zero. We can

summarize this closed-form solution as followes:

w
[s]
k [v] =

 −
1− λ

‖g[s]
k

‖2
αk

g
[s]
k [v] if ‖g[s]

k ‖2 > λ,

0 otherwise.
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3.4.3 Convergence criterion and manifold identification

If we assume w∗ as an optimal solution, then the difference of the expected function
value at w̄k and the optimal function value after k iterations can be bounded as
followes [Xiao 2010, Theorem 3]:

Eφ(w̄k)− φ(w∗) ≤ 1√
k

(
θ′D2 + G2

θ′

)

where ‖gk‖2 ≤ G with ∀k ≥ 1 is a uniform upper bound on the norms of the
subgradients of gk and for some D > 0 that satisfies h(w∗) ≤ D2. Hence after k
iterations our estimate is at most O

(
1√
k

)
away from the optimum.

According to Lee and Wright [2012, Definition 3] we can define a manifold M for
a special case of R(w) = ‖w‖1. Manifold definitions for elastic net and group `1

are similar to `1. Given set of indices {1, 2, . . . , p} (in our case these are the indices
of the features) and some z̄ ∈ Rp we can define a partition of those indices into
3 disjoint subsets P ⊆ {1, 2, . . . , p}, N ⊆ {1, 2, . . . , p} and Z ⊆ {1, 2, . . . , p} that
implies P ∩N = N ∩ Z = P ∩ Z = ∅. Hence we have

{1, 2, . . . , p} = P ∪N ∪ Z

with z̄r = 0 ∀r ∈ Z, z̄r > 0 ∀r ∈ P, z̄r < 0 ∀r ∈ N

To fulfill Lee and Wright [2012, Definition 3] a map H : Rp → Rq can be constructed
as H(z) = z[r]r∈Z with q = card(Z). Thus a manifoldM is then

M = {z ∈ Rp | zr = 0 ∀r ∈ Z} = {z ∈ Rp |H(z) = 0}.

Using this definition we estimate an upper bound for the probability to detect man-
ifold wk ∈ M after k iterations in a general convex case that matches group `1

penalization [Lee and Wright 2012, Theorem 16]:

P(wk ∈M) ∈ O
(

1− 1
4√k

)
. (3.12)

In a similar way we use Lee and Wright [2012, Theorem 17] to estimate an upper
bound for the probability to detect manifold wk ∈M after k iterations in a strongly
convex case that corresponds to our elastic net penalization:

P(wk ∈M) ∈ O

1−

√
6 + ln k

k

 . (3.13)

In both convex and strongly convex cases P(wk ∈ M) is increasing and converging
to 1. In Figure 3.2 we can see the two curves supporting this proposition. Hence
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Figure 3.2: Upper bound of the probability for RDA to identify a manifold in k it-
erations in a convex case is O

(
1− 1

4√
k

)
. For strongly convex problems

RDA converges to an optimal solution after k iterations with a probabil-
ity bounded by O

(
1−

√
6+ln k
k

)
. The comparison of these upper bounds

identifies faster convergence of RDA in strongly convex problems.

elastic net as we can see is able to identify manifold faster than group `1 and at 105

iterations the probability is about 1. Group `1 as a general convex problem needs
more iterations to be performed to achieve the same level of probability as elastic net.
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4.1 Rapidminer operators

Two operators for Rapidminer have been implemented:

• group `1 operator4:

– input: example set on which a model should be learned

– output: learned model, input example set

– further arguments: λ, θ, epochs, “iterations until convergence”;

• elastic net operator5:

– input: example set on which a model should be learned

– output: learned model, input example set

– further arguments: λ1, λ2, θ, epochs, “iterations until convergence”.

In both operators we use an parameter called epoch. One epoch defines one iteration
over all patients of the training set (e.g. 70% of 257). After each epoch the order of
the patients is shuffled in the internal data structure.
Another extra parameter is called “iterations until convergence”. We introduced it in
Section 3.4.3. Hence we stop learning process after a set of selected features is found
that has not changed for the last n iterations. To have upper bound of iterations in
real situation both discussed features are correlated in the following way:

• in case a set of selected features is found that has not changed within the last
n iterations, the training is stopped;

• in case we were not able to find a set of non-changing features we stop the
training after 2k epochs.

4https://bitbucket.org/AEgorov/logistic-regression-with-group-l1/
5https://bitbucket.org/AEgorov/logistic-regression-with-elastic-net/
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4.2 Experiment design

In order to detect the best fitting solution we have to figure out the parameters given
to the operators that optimize the classifier. To achieve these two goals we perform
a validation process consisting of two validation processes:

• cross-validation (called “inner validation” later)

• validation with random sampling (called “outer validation” later)

In the following we explain these validation processes and how they work together
on group `1 operator and its tuning parameter λ.

1. First we use random sampling to split the given data into training set TR and
test set TE.

a) In the inner validation we consider TR and apply 10-fold cross-validation
for a given λ on it. To do this we optimize the function (3.5) using group `1
operator.

b) This step is repeated on different values of λ from a predefined interval.
After computing different models and comparing their accuracy we se-
lect λ that produces produces model with the highest performance on
this TR.

2. After optimal λ for TR is fixed, we compute the weight vector w for TR as
above and test its accuracy on TE.

Repeating steps 1 to 2 for 10 times (10-fold outer validation) each time splitting
given data set into different TR and TE sets will give us 10 possible models using
feature selection.

group `1 elastic net
λ / λ1 0.00001, 0.0533427,

0.1066753, 0.160008,
0.213341, 0.266673, 0.320006,
0.373339, 0.426671, 0.480004,
0.533337, 0.586669, 0.640002,
0.693335, 0.746667, 0.8

0.0000001, 0.00900009,
0.01800008, 0.02700007,
0.03600006, 0.04500005,
0.05400004, 0.06300003,
0.07200002, 0.0810000, 0.09

λ2 n/a 0.0001
θ 1 1

Epoch 200 100
IUC 150 30 - 60

Table 4.1: Values used in experiments. IUC = “Iterations until convergence”. Values
in this table are rounded and were more precise in the experiments.
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Figure 4.1: Validation with random sampling and inner cross-validation. After ran-
domly spitting the data into training and test sets inner cross-validation
of several parameters is completed. Performance of a model with param-
eter chosen in cross-validation is measured.

Figure 4.1 shows a draft of the described processes where the dataset is split ran-
domly into different training and test sets after every fold in “Step 1” of outer
validation. Then inner validation (“Step a” and “Step b”) is repeated with different
parameters values, before parameters producing the highest performance values are
evaluated in “Step 2” of outer validation.
In case of elastic net we optimize function (3.6) using elastic net operator. The pro-
cess described above is repeated the same way, but using two tuning parameters (λ1

and λ2).
In Table 4.1 you can find parameter values used for described operators. epoch-values
are just guide values as it depends on “Iterations until convergence”. We described
it in previous section. Though “Iterations until convergence” varies between the two
operators, achieved accuracy is comparable. This result corresponds with the dif-
ferent convergence rate that we stated in Section 3.4.3 which is needed to identify
the manifold in group `1 and elastic net. Hence elastic net has a lower epoch and
“Iterations until convergence” values.
As an overall result of the experiments described above we achieve sparse weight
vectors representing features selected by group `1 (genes containing exons) and elas-
tic net (exons). In this way in 10 outer validation steps we produce 10 classifiers
with each of them having different performance values. In Table 4.2 you can find
performance results of the found classifiers and number of selected exons for both
approaches and for group `1 also the number of selected groups (genes). According
to mean values group `1 achieves slightly higher values for accuracy, f-measure and
sensitivity (see Appendix for explanation) while elastic net with average twice as
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ID Accuracy F-Measure Sensitivity Specificity Groups Exons

group `1

g1 0.794872 0.846154 0.956522 0.5625 175 5662
g7 0.833333 0.876191 0.901961 0.703704 91 3062
g10 0.807692 0.859813 0.958333 0.566667 79 2738
g11 0.782051 0.831683 0.807692 0.730769 95 3192
g13 0.858974 0.904348 0.962963 0.625 15 517
g18 0.846154 0.87234 0.82 0.892857 89 2876
g20 0.794872 0.826087 0.883721 0.685714 84 2929
g23 0.807692 0.862385 0.959184 0.551724 86 2970
g27 0.807692 0.869565 0.943396 0.52 115 3576
g29 0.794872 0.84 0.875 0.666667 148 4615
µ 0.8128 0.8589 0.9069 0.6506 97.7 3213.7

elastic net

d1 0.782051 0.831683 0.823529 0.703704 — 1933
d2 0.820513 0.862745 0.916667 0.666667 — 2076
d5 0.807692 0.845361 0.773585 0.88 — 2344
h1 0.794872 0.849057 0.918367 0.586207 — 1780
h12 0.833333 0.868687 0.934783 0.6875 — 2826
h18 0.820513 0.862745 0.862745 0.740741 — 40
h20 0.846154 0.888889 0.96 0.642857 — 6477
h23 0.807692 0.864865 0.888889 0.625 — 48
h24 0.782051 0.828283 0.872340 0.645161 — 31
h29 0.782051 0.838095 0.862745 0.62963 — 45
µ 0.8077 0.8540 0.8814 0.6807 — 1760

Table 4.2: Results of the cross-validation process 4.1. ID is an internal name of each
iteration. Groups and exons account number of selected groups and exons
respectively. Since elastic net does not need any grouping knowledge,
we do not obtain any information of some kind of groups selected. All
numbers have been rounded to fit this representation.

little exons selected than in group `1 can only produce higher specificity.
Though each of trained classifiers can demonstrate high accuracy, it is essentially to
find set of genes or exons that can be used to predict stage and consequently sur-
vival of new patients. Unfortunately Ein-Dor et al. [2005] stated that different sets
of genes/exons can produce similar classifiers depending on the chosen training set.
This means that since in every new iteration of outer validation new training and
test sets are randomly chosen, we can get models with different features, but similar
performance. We observed similar behavior with classifiers in our experiments: all
10 classifiers prepared with group `1-operator do not have a single gene in common.
Hence comparing these results is not useful. Therefore two further approaches are
applied to evaluate the selected features:

© Alexey Egorov 20



Logistic Regression with Group `1 vs. Elastic Net Regularization

4 Experiments

1. We build an average over all average weight vectors according to one approach,
build a union over all selected features in all runs and take them into account;

2. Select n features with the highest weights produced in step 1 (in case of
group `1 we consider average group weight).

4.3 Comparing results

4.3.1 Prediction performance analysis

We figured out the most important set of features chosen in 10 runs of our in Fig-
ure 4.1 represented process. For the group `1 approach the built union consists of
329 genes while they contain 9449 exons in total. With elastic net penalization we
were able to select 8113 exons in 10 outer validation runs altogether. We produced
a new dataset containing only the united features of one approach and used these
datasets to train our final models and test their accuracy. For this purpose Rapid-
miner operators mentioned above were used. This time we set λ1 and λ2 to zero to
only use logistic regression function and not filtering out more features. Furthermore
“iterations until convergence” was also set to zero as the set of features would not
change without a regularization term. This case of “iterations until convergence”= 0
is implemented in the operators so that only the number of epochs is crucial. We
set θ = 1 and epoch = 200 for both new data sets. To evaluate the prediction power
of these models we perform another validation process. The scheme stays similar to
the previous process:

• dataset of 257 patients with a smaller set of features (exons) is split 30 times
into training and test sets;

• the learned model is applied on the test set and prediction performance is
measured.

We calculated accuracy, f-measure, sensitivity and specificity to measure the perfor-
mance. Mean and standard deviation of those values give us a possibility to compare
the produced prediction models.
We used both bootstraping and random sampling in this evaluation process. Steyer-
berg et al. [2001] suggests bootstrapping as the most efficient validation in terms
of logistic regression analysis and small sample sets. Nevertheless random sampling
shows comparably good results in case of group `1 as one can see in Table 4.3. Both
validations emphasized that the model learned on features selected with elastic net
approach is able to predict the low risk group better than the model built with the
group `1 selected features (specificity is around 10 % higher). Concerning high risk
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group prediction (sensitivity), even though bootstraping and random sampling are
performing differently using the elastic net approach, they still present us with high
performance value which is comparable to that from group `1. The overall accuracy
of elastic net is still higher in both validation methods.
In Figure 4.4 we can find 25 genes with highest weights selected by group `1. We con-
sider the exons chosen by elastic net approach and take those into account that are
contained in top 25 genes mentioned above. In the following we examine data from
several genes that are associated with neuroblastoma cancer. In Section 4.3.2 we
mention some of those publications and what has been found so far about those
genes according to neuroblastoma. In the following we observe weights calculated
by the two approaches and evaluate and analyze the expression data of exons from
some genes.
Althoug elastic net has no knowledge about grouping of exons to genes, it is working
surprisingly well. In Figure 4.3 we observe that elastic net identified 26 out of 33
exons in gene MAP3K5 as important for classification. Mean expression values for
labels 1 and -1 of exons 28 to 33 are almost overlapping inducing that their expres-
sion values are not differing so much to be used for classification. Thus it appears
to make sense that elastic net does not select those features. Exon 7 has a similar
behavior and hence was set to zero by the elastic net operator. Weights of exons 1,
4, 12, 14, 20 and 25 are quiet different in group `1 and elastic net. To reveal why
this is happening a more precise analysis of the expression data of those particular
exons would be needed.
Similar behavior can be observed in Figure 4.4. The curves of found weights for
the gene TMEFF2 are partly similar. Though exon 14 has the smallest difference
between mean expression values for label 1 and label -1 and is also not selected by
elastic net operator. Interesting in this case is that the weight value by group `1

for this exon was set high compared to other weights in this gene by this approach.
Also weights of exon 11 have a big gap in the figure confirming different penalization

Accuracy F-Measure Sensitivity Specificity

Group `1

Random sampling
µ 0.7983 0.8431 0.8660 0.6839
std 0.1468 0.1527 0.1626 0.1406

Bootstrapping
µ 0.7997 0.8447 0.8729 0.6780
std 0.1465 0.1526 0.1590 0.1473

Elastic net

Random sampling
µ 0.8252 0.8588 0.8497 0.7839
std 0.1515 0.1556 0.1620 0.1719

Bootstrapping
µ 0.8443 0.8784 0.8855 0.7738
std 0.1521 0.1570 0.1621 0.1626

Table 4.3: Final mean and standard deviation of 30 iterations of bootstrapping and
random sampling with both group `1 and elastic net.
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Figure 4.2: The name giving function of ASK1 is “apoptosis” which means a process
of programmed cell death. Hence this figure shows a pathway of ASK1
with cell death at the end.[Kanamoto et al. 2000]

strategies of both approaches.
Two histones appear in the top rankings of group `1 penalized features. In Fig-
ure 4.5 represented weights of HIST1H1A for elastic net seem to rely on the dif-
ference between mean label expression values unlike group `1. It is surprinsingly
to see that gene HIST1H3B that was selected by group `1 with the highest weight
consisting of one single exon was not selected by elastic net in any of 10 runs of the
validation process at all.
In the similar way Figures 4.6 and 4.7 point out the weights of NEGR1 and second
highest weighted gene SLC24A2 respectively. In both cases we detect differences in
group `1 and elastic net penalization terms setting several features weights dissimi-
lar. Further results for PTPRZ1 and SRR can be seen in Figure 4.8 and Figure 4.9
respectively.

4.3.2 Biological importance

In Section 4.3.1 we analyzed weights and expression values of the genes and exons
selected by group `1 and elastic net. In the following we consider publications about
neuroblastoma or cancer research in general mentioning several of the genes as seen
in Figure 4.4.
One of the selected genes was MAP3K5, mitogen-activated protein kinase kinase
kinase 5. It is encoding apoptosis signal-regulating kinase (ASK1). The name giv-
ing function of ASK1 is “apoptosis” and this means a process of programmed cell
death. Its crucial importance in cancer research has been cited in several publica-
tions. Kanamoto et al. [2000] investigated general role of ASK1 enzym and detected
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Gene ID Gene name Name expanation Weight

2946215 HIST1H3B histone cluster 1, H3b -8.208

3200762 SLC24A2 solute carrier family 24 (sodium/potassium/cal-
cium exchanger), member 2

-5.0801

2946194 HIST1H1A histone cluster 1, H1a -4.8779

3762753 CA10 carbonic anhydrase X -4.7127

4026075 GABRA3 gamma-aminobutyric acid (GABA) A receptor, al-
pha 3

4.0264

3456805 GTSF1 gametocyte specific factor 1 4.0049

4026119 MAGEA10 melanoma antigen family A, 10 3.6744

2602770 DNER delta/notch-like EGF repeat containing -3.6167

3127156 GFRA2 GDNF family receptor alpha 2 3.4531

3361811 STK33 serine/threonine kinase 33 3.3473

3706219 SRR serine racemase -3.2492

3452478 AMIGO2 adhesion molecule with Ig-like domain 2 -3.1524

3985717 PLP1 proteolipid protein 1 -2.9398

2592598 TMEFF2 transmembrane protein with EGF-like and two
follistatin-like domains 2

-2.746

2349402 AMY2B amylase, alpha 2B (pancreatic) -2.7031

3021377 PTPRZ1 protein tyrosine phosphatase, receptor-type, Z
polypeptide 1

-2.6879

2975867 MAP3K5 mitogen-activated protein kinase kinase kinase 5 -2.5206

3216276 SLC35D2 solute carrier family 35, member D2 -2.5061

2418078 NEGR1 neuronal growth regulator 1 -2.4708

3825609 NCAN neurocan 2.4678

3373070 LOC441601 septin 7 pseudogene 2.3774

2980516 CNKSR3 CNKSR family member 3 -2.3299

2378180 C1orf107 chromosome 1 open reading frame 107 2.2586

2343025 AK5 adenylate kinase 5 -2.2561

3013565 DYNC1I1 dynein, cytoplasmic 1, intermediate chain 1 2.2534

Table 4.4: Top 25 weighted genes. The weights has been computed with the final
model using only features selected with group `1 penalization of logistic
regression in previous iterations of the process represented in Figure 4.1.
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pathway which is showed in Figure 4.2. Arvidsson et al. [2001] even already analyzed
ASK1 resistant neuroblastoma. Some other research of ASK1 in malignant fibrous
histiocytomas was done in Chibon et al. [2004]. Further research of growth inhibition
of colon cancer cells has been done by Kuwamura et al. [2007].
TMEFF2, transmembrane protein with EGF-like and two follistatin-like domains
2, was analyzed in Ali and Knauper [2007] which is implicated in cell signaling,
neuronal cell survival, tumor suppression and Alzheimer disease. The connection
between ADAM, a disintegrin and metalloproteinase, and TMEFF2 in prostate can-
cer is studied in that publication. According to this publication TMEFF2 may in-
trude some ADAM’s pathways in ErbB signaling. Since ErbB family members are
considered in Okada and Koizumi [1997] and Richards et al. [2010] as part of neurob-
lastoma research, it may be of great interest to include TMEFF2 into more detailed
studies of its possible impact on neuroblastoma cancer cells.
Glial cell line-derived neurotrophic factor (GDNF) family that contains GFRA2 gene
selected in this study is described to have some impact on neuroblastoma [Hansford
and Marshall 2005].
Serine racemase (SRR) takes part in the regulation process of glutamate-N-methyl-
D-aspartate (NMDA) [Wolosker et al. 1999] while NMDA as a glutamate receptor
was discovered in neuroblastoma cell line in 1997 [North et al. 1997].
NEGR1 (neuronal growth regulator 1) is next to MYEOV one of the novel candidate
gene targets in neuroblastoma. The results and findings of Takita et al. [2011] re-
vealed significantly lower expression of this gene in neuroblastomas at an advanced
stage of the disease and thus suggest a possible prognostic value for NEGR1 in neu-
roblastoma.
The two histones, HIST1H3B and HIST1H1A, that were high weighted by group `1
were mentioned in some publications according the neuroblastoma research. In Cot-
terman and Knoepfler [2009] HIST1H3B is stated in connection with MYCN expres-
sion. HIST1H1A can be found in [Pieler et al. 1981; Ajiro et al. 1990] as part of the
research of histone H1 in neuroblastoma cells.
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Figure 4.3: Elastic net identified 26 out of 33 exons in MAP3K5 as important while
setting 7 exons to zero.
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Figure 4.4: The curves of weights for TMEFF2 are similar in both approaches except
exon 14 which is set to zero by elastic net and exon 11 that shows a big
gap between the two approaches.
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Figure 4.5: No exons in HIST1H1A were as to zero by elastic net, but the weights
selected with group `1 seem not to correlate so much with the difference
of mean label expression.
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Figure 4.6: NEGR1 is one of the examples where we can detect several differences
in group `1 against elastic net penalization terms.
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Figure 4.7: SLC24A2 gene is the second highest weighted gene by group `1 showing
similar difference between the two regularizers as NEGR1 gene.
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Figure 4.8: 6 out of 27 exons in PTPRZ1 gene has been set to zero by elastic net.
Several exons show big gaps between the weights produced with different
regularizers.
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Figure 4.9: In SRR gene no features were set to zero by elastic net which can be
explained by considering mean label expression values, although in case
of group `1 exon 1 is set almost to zero.
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5 Discussion

In the course of this thesis we introduced two penalization terms for logistic regres-
sion, group `1 and elastic net. Our motivation was driven by a real life application of
feature selection as a part of the neuroblastoma research. Using RDA algorithm we
were able to derive an appropriate solution for the previously defined optimization
problem that was containing nondifferentiable regularizers. Two Rapidminer opera-
tors were implemented to produce models using logistic regression with one of the
regularizers. The computed solutions were sparse with both approaches delivering a
comparably good performance.
After analyzing results achieved in this work we identified that elastic net is able
to make better predictions while still selecting similar features on a gene level, but
choosing different weights for single exons. Though elastic net performed well, the
running time of that approach was higher compared to group `1. Thus on the one
hand some further analysis of running time for both methods can be included in
next research. Furthermore, using enhanced algorithm RDA+ suggested by Lee and
Wright [2012] could even lead to faster convergence of manifold identification in the
implemented operators.
On the other hand since both approaches produce comparably good predictors, a
combination of choosing features first on the gene level (group `1) and then filtering
out further features on the exon level inside the groups (`1) could be analyzed in
comparison to the results stated in this work. This approach, sparse group lasso,
was described together with group `1 in Friedman et al. [2010]. A variation of sparse
group lasso using elastic net instead of `1 as further penalization term could also be
of interest and compared to sparse group lasso and results from this thesis.
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Accuracy, specificity and sensitivity There are several terms that are commonly
used along with the description of sensitivity, specificity and accuracy. They are
true positive (TP), true negative (TN), false negative (FN), and false positive
(FP). If a predicted value is “true” and actual value is also “true”, the result
is considered “true positive” (TP). Both “true positive” and “true negative”
suggest a consistent result between the predicted and actual value (also called
standard of truth). If we predict “true” value while it is actually “false”, the
result is “false positive” (FP). Similarly, if the predicted result is “false”, but
actual value is “true”, the result is “false negative” (FN). Sensitivity, specificity
and accuracy are described in terms of TP, TN, FN and FP:

• Sensitivity = TP/(TP + FN)

• Specificity = TN/(TN + FP)

• Accuracy = (TN + TP)/(TN+TP+FN+FP)

Source: [Zhu et al. 2010]

Bounded set The set F is bounded if there is some real number M > 0 such that
||x|| ≤M for all x ∈ F .

Closed set The set F is closed if for all possible sequences of points xk in F , all
limit points of xk are elements of F .

Compact set The set F is compact if every sequence xk of points in F has at least
one limit point and all such limit points are in F . Thus: F ∈ Rn is closed and
bounded ⇒ F is compact.

Convex set A set S ∈ Rn is a convex set if the straight line segment connecting any
two points in S lies entirely inside S. Formally, for any two points x ∈ S, we
define αx+ (1− α)y ∈ S for all α ∈ [0, 1].
Source: [Nocedal and Wright 2000, Chapter 1, Convexity]
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