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1 Introduction

Since the rise of (personal) computers, the amount of data available to the public and
researchers has been increasing dramatically, potentially giving us access to new insights
and information. This growth has been fueled further by the recent advances of smart-
phones and embedded devices. Together with the amount, the complexity of data to
be analyzed has increased. However, these masses of data can also be a burden, as it
might be impossible even for enthusiastic experts to sift through all the available data
to find new insights. Therefore data mining techniques are needed to help analyze large
amounts of data. One particular field of work is Local Pattern Mining, which finds rules
of association, correlations or clusters in data, based on learning algorithms or statistical
measures. This can be extremely helpful for domain experts as it can provide hints to
possibly valuable/previously hidden information in the data, that might be interesting
for research (e.g., research on gene expressions)

There are already many approaches to find and generate such interesting pre-selections.
One of those is Subgroup Discovery (SD) which has recently been generalized into Ex-
ceptional Model Mining (EMM ).

1.1 Aim of this Thesis

In this thesis we are trying to extend the Correlation Model Class for EMM proposed by
Leman et al. [1], to non-parametric rank correlation measures and investigate suitable
quality measures. Instead of the standard Pearson correlation coefficient, which can only
measure linear relationships, we will apply rank correlation coefficients. The theoretical
advantage is, that they gauge the dependency relationship between two variables, without
requiring that relationship to be linear. Figure 1.1 displays an example dataset on which
some function could be fitted perfectly. For such cases we would wish for a correlation
measure value of 1 (or -1 depending if it is monotonically rising or falling), indicating
a perfect monotonic function. A rank-based correlation measure such as Spearman’s
correlation fulfills this wish, while the standard Pearson correlation only returns a value
of 0.93, indicating a non-perfect linear relationship.

1



1 Introduction

r =0.93
r =1s

Figure 1.1: Comparing Pearson correlation with Spearman’s rank correlation

We perform experiments to see if the theoretical advantages of a non-parametric measure
have an impact in practice, i.e., whether we will find the same, similar or entirely different
subgroups than with the standard Correlation Model Class.

1.2 Structure

In Chapter 2, we describe the concept of Exceptional Model Mining as a generalization of
Subgroup Discovery. Chapter 3 focuses on related work concerning EMM and correlation
measures. The main contribution of this thesis lies in Chapter 4 and all subsequent
chapters. In Chapter 4 we present 5 widely used and recognized correlation measures
and choose 3 of them to develop a new Rank Correlation Model Class. Chapter 5 gives
a quick overview on our implementation in RapidMiner. The chosen datasets as well as
the results of our experiments can be found in Chapter 6. Finally, Chapter 7 presents a
conclusion as well as a future outlook.
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2 Preliminaries

Data Mining is the scientific field of computer-aided extraction of useful, interesting
or previously unknown information/patterns from (large) databases. The algorithms
usually found in Data Mining are data-driven, which means that not the algorithm alone
decides what a good “solution” is, but that the data itself will indicate the direction.

Two different approaches to learning from data are supervised and unsupervised learning.
In unsupervised learning, there is no feedback or labeling of“correct” instances, i.e., we do
not tell the algorithm anything about the data. An unsupervised learning scheme has to
discover the knowledge or hidden structures in the data by itself. In supervised learning,
on the other hand, there is some sort of feedback/measure or labeling for the data
available. The algorithm then tries to infer relationships between the measured/labeled
variables of the data; or functions that could be used to map new examples.

When applying those approaches we should also keep in mind the differences between two
concepts: local patterns and (global) models. A local pattern describes (small) subsets of
a given dataset (e.g., people who buy milk, also often buy coffee), while a model is fitted
on the whole data to describe some specific relationship (e.g., a regression line fitted on
the age of a person and their income).

2.1 Local Pattern Mining

A standard and important task for Data Mining is to identify elements that differ from
the norm, which some techniques try to achieve by focusing on outlier detection. Another
approach is Local Pattern Mining (LPM ), where the goal is to find subgroups in the
data. Subgroups are subsets of a dataset, that can be described by some conditions
imposed on the attributes of the dataset.

The availability of descriptions for a subgroup makes them much more usable and inter-
esting, as Duivesteijn points out in [2]: “if we tell a pharmaceutical company that five
given persons react badly to a certain type of medication, it is more difficult for them to
act on the information than it would be if we could tell them that the group of smokers
react badly to the medication.” What exactly constitutes a divergence from the norm
can be defined in different ways, as we will see.

3



2 Preliminaries

2.1.1 Unsupervised Local Pattern Mining

A traditional example for Local Pattern Mining is Frequent Itemset Mining [3], which
was originally developed to analyze customer behavior regarding the purchased products.
In this setting a frequent set of products describes how often specific items are bought
together. One could for example find the subgroup of customers of a supermarket, that
simultaneously buy coffee and milk. In LPM we thus have no designated target attribute;
it is an unsupervised method.

2.2 Subgroup Discovery

A straightforward type of supervised Local Pattern Mining technique is Subgroup Dis-
covery [4] (SD), which is concerned with finding interesting or exceptional subgroups
(i.e., relations between properties or variables) in a population with respect to a single
target attribute. The target attribute is the value of interest, meaning we typically try
to find subgroups where the distribution of the target attribute is significantly different
from its distribution in the whole dataset.

In general, the interestingness of a subgroup is determined by a quality measure (e.g.,
distribution of the target attribute), which is defined to measure the difference between
a potentially interesting subgroup and its complement (or the whole dataset). Essen-
tially, we could choose whatever we wish as a quality measure, but for a good quality
measure some guidelines are given by Duivesteijn: “Since unusual distributions are more
easily achieved in small subsets of the dataset, the typical quality measure also con-
tains a component indicating the size of the subgroup. Thus, whether a description is
deemed interesting depends on both its exceptionality and the size of the corresponding
subgroup” [2].

Example for Subgroup Discovery: in [4], a dataset with four attributes is considered:

• Age = {Less than 25, 25 to 60, More than 60};

• Gender = {M, F};

• Country = {Spain, USA, France, Germany};

• Money = {Poor, Normal, Rich} ← target variable.

With respect to the target attribute “Money”, traditional SD could find the following
rules:

• R1 : (Age = Less than 25 AND Country = Germany)→ Money=Rich;

• R2 : (Age = More than 60 AND Gender = F)→Money=Normal.

Here, R1 stands for a subgroup of German people less than 25 years old, for which the
probability of being rich is unusually high compared to the rest of the population, and
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2.3 Exceptional Model Mining

R2 represents that women of more than 60 years old are more likely to have normal
wealth than the rest of the population.

2.3 Exceptional Model Mining

2.3.1 Overview

In SD we find subgroups where the target attribute shows an unusual distribution.
However, we could also think of applying and comparing models on the data. This
leads to a generalization of Subgroup Discovery: Excpetional Model Mining. With EMM
we can find subgroups of the data where multiple target attributes show an unusual
joint distribution. This is achieved by applying a model (e.g., regression) on the target
attributes and comparing subgroups based on the fitted model - hence Exceptional Model
Mining.

An Exceptional Model Mining Class consists of a fixed model (e.g., regression) and
its model parameters, which vary depending on how the model is fitted on the data
(e.g., slope value for a fitted regression model). We then strive to identify descriptions of
subgroups, for which the model parameters deviate considerably from those of the model
built from the entire or complement dataset. “Formally this is accomplished by using an
exceptionality measure that maps a subgroup (pattern) to a real number corresponding
to its quality (interestingness) based on its model parameters” [5].

2.3.2 Example

A simple example for EMM has been given by the authors of [1]; we consider a simple
linear regression model:

Pi = a+ bSi + ei

Where Pi is the sales price of a house, Si is the lot size, and ei the random error term.
One could now fit this model to a subgroup of the dataset, for example a group of houses
situated in a desirable location (what makes a location desirable is of course debatable).
We could then perform a statistical test to gauge whether the slopes of the two fitted
models are significantly different.

5
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2.3.3 Comparison

To illustrate the differences of LPM, SD and EMM, we compare them in terms of the
found subgroups/rules. We can then again see that by allowing more than one target
attribute, EMM is simply a generalization of SD.

Unsupervised Local Pattern Mining:

• no target attribute;

• example: find a subgroup of customers of a supermarket, that simultaneously buy
coffee and milk.

Subgroup Discovery:

• one target attribute;

• example: find a subgroup of smokers, whose lung cancer incidence is above average.

Exceptional Model Mining:

• multiple target attributes;

• example: find a subgroup of inner city houses, for which the correlation between
price of a house and its lot size is substantially weaker than for the average house.

2.3.4 Definitions

We will introduce the definitions necessary to formalize model classes for EMM.

In general we will have a dataset with several attributes from which we pick our target
attributes. The remaining attributes are used for subgroup description.

Definition 1
A dataset Ω is a bag of N records r ∈ Ω of the form: r = (a1, ..., ak, l1, ..., lm)

We call the attributes a1, ..., ak the descriptive attributes and attributes l1, ..., lm the target
attributes

To define a subgroup we first need a way of describing it. In general this is achieved by
using a description language D from which we can build descriptions D. To allow for
flexibility in the choice of D, we formally define descriptions as a generic function.

Definition 2
A description is a function D : (ai1, ..., a

i
k)→ {0, 1}

A description D covers a record r if and only if D(ai1, ..., a
i
k) = 1

With the description we indirectly already have a subgroup, as it simply consists of the
records covered by the description.

6



2.3 Exceptional Model Mining

Definition 3
A subgroup corresponding to a description D is the bag of records GD ⊆ Ω that D covers:

GD = {ri ∈ Ω | D(ai1, ..., a
i
k) = 1}

To evaluate a candidate description in a given dataset, we use a quality measure to gauge
how interesting the inferred subgroup is.

Definition 4
A quality measure is a function ϕ : D → R that assigns a unique numeric value to a
description D

2.3.5 Defining the Task/Problem

As Duivesteijn [2] remarks: “The goal is to find interesting subgroups of a dataset, for
whatever instantiation of “interesting” the user of EMM cares for, which is intrinsically
subjective. Therefore, any formal definition of the EMM task will only concern a subset
of what we attempt to achieve with EMM.” Nevertheless for a formal discussion it is
necessary to provide a general definition. An attempt of doing so is described in [2]:

Top-q Exceptional Model Mining

Given a dataset Ω, a description language D, a quality measure ϕ, a positive integer q
and a set of constraints C. The Top-q Exceptional Model Mining task delivers the list
{D1,..., Dq} of descriptions in the language D such that:

• ∀ 1 ≤ i ≤ q : Di satisfies all constraints in C

• ∀ i, j : i < j ⇒ ϕ(Di) ≥ ϕ(Dj)

• ∀ D ∈ D\{D1, ..., Dq} : D satisfies all constraints in C ⇒ ϕ(D) ≤ ϕ(Dq)

Constraints that can be imposed are e.g., a minimum support level, a minimum threshold
for the quality measure or the complexity of the subgroup description.

Comparing subgroups

As already briefly mentioned in Section 2.3.1, a subgroup GD is only of interest if it differs
in some way from its complement GCD or the whole dataset Ω. The question remains, to
which one should it actually be compared? Duivesteijn [2] notes that there is no general
answer to this question. However the choice is not arbitrary, as the real-life problem can
give us some directions for this decision. Suppose we are interested in deviations from
the norm, then we should compare to Ω. If we are more interested in finding schisms in
the dataset, a comparison to GCD makes more sense, as this implies a partitioning of Ω.

Sometimes the model class itself can dictate an answer: if learning models from the
data has a nontrivial computational expense, with regards to efficiency we might not

7



2 Preliminaries

have a free choice, because “when comparing n descriptions to Ω, learning n+ 1 models
suffices, but when comparing them to GCD, learning 2n models is required”. Furthermore
“a statistically inspired quality measure may require choosing either Ω or GCD, to prevent
violation of mathematical assumptions” [2].

8



2.3 Exceptional Model Mining

2.3.6 Basic Approach

For the top-q Exceptional Model Mining task we need:

• a refinement operator that generates possible subgroups;

• an algorithm that traverses the space of possible subgroups (heuristic or exhaus-
tive);

• a model class, defined by a fixed model (e.g., regression) and its model parameters,
which vary depending on how the model is fitted on the data.

Multiple target concepts can be explored by exchanging the model class.

Refining Subgroups

A description is created by conjunctions of basic conditions provided by the chosen
description language D. In our setting these are equalities (=) and inequalities (6=,≤,≥).
Refining a description is achieved by simply adding a new condition to the description.
This can be done by a refinement operator η : D → 2D. Usually η will be a specialization
operator, meaning “that every description Di that is an element of the set η(Dj), is more
specialized that the description Dj itself” [2].

We start with the empty description D; a new set η(D) is built by looping over the
descriptive attributes ai and the specialization is generated depending on the attribute
type.

We can formalize this as follows [2]:

• if ai is binary: add D ∩ (ai = 0) and D ∩ (ai = 1) to η(D);

• if ai is nominal, with values ν1, ..., νg: add {D ∩ (aj = νj), D ∩ (aj 6= νj)}gj=1 to
η(D);

• if ai is numeric: order the values of ai that are covered by the description D; this
gives us a list of ordered values a(1), ..., a(n) (n =| GD |). From this list we select
the split points s1, ..., sb−1 letting

∀b−1j=1 : sj = a(bj n
b
c)

Then, add {D ∩ (a(i) ≤ sj),D ∩ (a(i) ≥ sj)}b−1j=1 to η(D).

It should be noted, that these are not the only ways of refining subgroup descriptions.
Generating optimal subgroup descriptions is still subject of ongoing research. Hence
more sophisticated approaches are also explored, e.g., by Mampaey et al. [6], who in-
troduce linear-time algorithms for finding optimal sets for Set-valued conditions (e.g.,
Country ∈ {Spain, France}) and Interval conditions (e.g., Age ∈ [25, 60]). However, as
these “algorithms operate by only considering subgroup refinements that lie on a con-
vex hull in ROC space” [6], they are only applicable for concepts that can be described
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in ROC space. Thus, this approach does not fit our scenario, where we have multiple
(numeric) targets, for which ROC analysis does not exist.

Algorithm

To traverse the space of possible subgroups, a variation of the Beam search algorithm is
employed. The procedure is as follows: we select the descriptive attributes to generate
subgroup descriptions. On each iteration level, the best-ranking w patterns, that fulfill
the constraints C, are refined by the specified refinement operator η to form the candi-
dates for the next level. Once a specified level d of search depth is reached, we report
the q best-ranked descriptions.

Algorithm 1 Top-q Exceptional Model Mining
Input: Ω, ϕ, η, w, d, q, C
Output: resultSet
1: candidateQueue ← new Queue
2: resultSet ← new PriorityQueue(q);
3: for (int level ← 1, level ≤ d, level++) do
4: beam ← new PriorityQueue(w);
5: while candidateQueue6= ∅ do
6: seed ← candidateQueue.dequeue();
7: set ← η(seed);
8: for all (desc ∈ set) do
9: quality ← ϕ(desc);

10: if (desc.satisfiesAll(C)) then
11: resultSet.insertWithPriority(desc,quality);
12: beam.insertWithPriority(desc,quality)

13: while beam 6= ∅ do
14: candidateQueue.enqueue(beam.getFrontElement());

return resultSet;

10



3 Related Work

3.1 Exceptional Model Mining

Subgroup Discovery is a Data Mining technique that has undergone thorough research.
It has first been introduced by Klösgen [7] and Wrobel [8] and has since then been refined
through new applications and strategies. A broad overview on the history of Subgroup
Discovery, developed algorithms and quality measures has been published by Herrera et
al. [4].

The Exceptional Model Mining framework [1] has been proposed as a generalization of
Subgroup Discovery. Exceptional Model Mining is thus a very recent development. A
thorough introduction, several model classes and quality measures have been given in
[2].

3.1.1 Existing EMM Model Classes

Correlation Model Class

The correlation model class computes Pearson’s Correlation Coefficient between two
attributes for possible subgroups and their complements. A significance test on the dif-
ferences in the coefficient r is used as a quality measure.

Classification Model Class

As a more complex instance, the classification model class allows classifiers, such as
decision trees, support vector machines or ensembles of classifiers, as a basis for measuring
the quality of a subgroup. The goal is to find descriptions for which a classifier learned
from the targets has deviating performance.

This instance of EMM can deliver important indications for data miners when a de-
veloped algorithm works particularly well, or when its performance is not satisfactory.
The knowledge can be incorporated by classification algorithm developers to improve
their algorithms. In [2, Chapter 5] logistic regression has been used to exemplify the
application of the classification model.

11
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Bayesian Network Model Class

The Bayesian network model class allows multiple nominal targets between which a
Bayesian network is then learned. A description is deemed interesting, when the con-
ditional dependence relations between the targets are substantially different from the
description from these relations on the whole dataset.

Regression Model Class

The regression model class seeks descriptions for which (a subset of) the regression
parameter vector β significantly deviates from the parameter vector estimated on the
whole dataset.

3.1.2 Search Strategies: Heuristic or Exhaustive?

One can imagine that the space of possible subgroups is potentially large and thus it is
important to consider how this space can be explored. In Section 2.3.6 we have already
presented a way of doing so in a heuristic way, where only a subset of all possible
subgroups is actually explored. The advantage is achieved by not just arbitrarily selecting
some of them, but choosing several “good” candidates and refining them further. This
way we can avoid getting stuck in local optima.

An exhaustive alternative has been developed, using condensed model representations
stored in Generic Pattern Trees, by Lemmerich et al. [5]. For their GP-Growth algo-
rithm (based on FP-Growth) a special data structure, called valuation basis, is needed
for every model class. As developing such a valuation basis for rank correlation is be-
yond the scope of this Bachelor thesis, we will leave this for future work. Van Leeuwen
[9] has proposed the EMDM (Exception Maximisation and Description Minimisation)
algorithm, another (iterative) alternative to the Beam search based approach presented
in [1]. Along with EMDM, two additional quality measures (based on KL divergence and
KRIMP) are described. However, the average “description complexities vary from 5 up
to 25 conditions” [9]. Resulting in “more complex subgroups than are typically found”
[9], which makes them somewhat uninspectable.

12
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3.2 Measurements of Correlation

A comparison of several correlation measures has been given by Clark [10]. Apart from
Pearson’s r and Spearman’s rs, he examines three other measures, which promise to
measure relationships beyond linear and monotonic behavior. Examples for datasets
that exhibit such behavior can be seen in Figure 3.1, where Pearson would only be able
to detect paterns 2 and 3, and to some extent 4 and 5.

Figure 3.1: Collection of datasets with various dependency structures

Hoeffding’s D

Contrary to sample correlation coefficients such as Spearman’s rs, Kendall’s τ , and Pear-
sons’s r, Hoeffding [11] developed a test of independence that can be used to detect a
much broader class of dependence structures beyond monotonic association. Hoeffding’s
statistic, denoted as D, is non-parametric and, similar to Spearman and Kendall, based
on ranks. For two random variables X and Y (with Ri and Si denoting the ranks of Xi

and Yi respectively) D is defined as:

13
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Definition 5

D =
Q− 2(n− 2)R+ (n− 2)n− 3)S

n(n− 1)(n− 2)(n− 3)(n− 4)

Q =
n∑
i=1

(Ri − 1)(Ri − 2)(Si − 1)(Si − 2)

R =
n∑
i=1

(Ri − 2)(Si − 2)ci

S =
n∑
i=1

ci(ci − 1)

ci =
n∑

α=1

φ(Xα, Xi)φ(Yα, Yi),where φ(a, b) =

{
1 if a < b

0 if a ≥ b

A similar statistic proposed by Blum et al. [12] can be used as a large-sample approxi-
mation for D [13].

Distance Correlation

Distance correlation (dCor) has been introduced by Székely et al. [14] to address the
deficiency of the Pearson correlation coefficient regarding non-linear relationships. It is
based on distance matrices for the X and Y variables and can take values between 0 and
1. According to Clark, a ranked-based version dCor could also be incorporated.

Maximal Information Coefficient

Reshef et al. [15] have developd the Maximal Information Coefficient (MIC ). It is based
on the concepts of Entropy and Mutual Information from information theory. Clark
points out that MIC could be seen as the continuous variable counterpart to mutual
information. Similar to dCor, MIC takes on values between 0 and 1, with zero indicating
independence.

Evaluation

After comparing these alternatives on several non-linear relationships Clark notes, that
“Hoeffding’s D only works in some limited scenarios”. In the experiments D did pick up
some of the non-linear relationships (e.g., a quadratic relationship or a circle pattern)
however, the computed values were relatively small (mean ranging from 0 to 0.1). This
became even worse when noise was added to the data (mean ranging from 0 to 0.02). So
even though it does pick up some non-linear relationships, due to the small values one
cannot get a good sense of the measured dependence.

dCor and MIC performed better at finding various relationships beyond linear ones.
However, when noise is present both become less predictable and the strength of detected
associations can vary strongly. Thus dCor and MIC might provide alternatives to more
classical approaches for picking up a wider variety of relationships, but they are not
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3.2 Measurements of Correlation

perfect either. Some additional problems with MIC are also described by Kinney and
Atwal [16]. Consequently, Clark also concludes that we “still need to be on the lookout
for a measure that is both highly interpretable and possesses all the desirable qualities
we want”.

Other approaches

As pointed out by Clark [10], the development of satisfying general dependence measures
that go beyond simple forms of relationships is still far from finished. Other approaches
therefore have been introduced in recent years. Gretton et al. [17] developed the Hilbert-
Schmidt Independence Criterion (HSIC ), which is based on an empirical estimate of the
Hilbert-Schmidt norm of the cross-covariance operator. Lopez-Paz et al. [18] proposed
the Randomized Dependence Coefficient (RDC ), which is an estimate of the Hirschfeld-
Gebelein-Rényi Maximum Correlation Coefficient (HGR). HGR was defined by Gebelein
[19] in 1941, however it is not computable and thus represents only an abstract concept.

All of the aforementioned measures have in common that they are mostly recent devel-
opments and as such, further investigation into whether they truly fulfill their promises
is needed. Additionally there is, to our knowledge, not yet a statistical way of comparing
results of these measures on different data samples, thus making it difficult to formulate
a mathematically well-supported quality measure based on them.
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4 The Rank Correlation Model Class

4.1 Motivation for a new Model Class

Detecting a correlation between some variables can lead to useful insights. While the
detection alone might not directly explain a potential underlying connection, domain
experts can try to infer and analyze the reasons behind it. Even if there is no clear
explanation, knowing that two things are in some way correlated can be useful. Especially
in medicine, a lot of treatments are based on the correlation between their usage and
the healing of some illness.

As briefly highlighted in Section 3.1.1, a correlation model class for EMM exists [2,
Chapter 4], which uses Pearson’s standard correlation coefficient as a model to measure
the exceptionality of a subgroup. However, this implies that the data follows a normal
distribution, as experiments have shown that the distribution of r is sensitive to non-
normality [20]. Without the normality assumptions, many statistical tests on r therefore
become meaningless or at least hard to interpret. Considering that normality cannot be
assumed for many real-life examples and datasets, its is questionable if Pearson’s r is then
still a suitable measure. The normality assumption therefore limits (at least theoretically)
the scope of application for this model class. Furthermore, r is easily affected by outliers
and in general only captures linear relationships between targets.
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Figure 4.1: Anscombe’s quartet
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4.2 Standard Correlation Measures

These limitations can be illustrated very well with Anscombe’s quartet [21], displayed in
Figure 4.1, which consists of four different datasets with almost identical basic statistical
properties (e.g., all four share the same Pearson coefficient). Francis Anscombe presented
it to emphasize the importance of visualization when analyzing data. All four datasets
have a Person correlation of 0.816. The effect of outliers can be seen quite clear in sets
3 and 4, two datasets with a clearly different relationship between the two displayed
variables.

Figure 4.2 gives some examples of datasets and their Pearson coefficient, for several non-
linear relationships not captured by r. One should keep in mind that rank correlation
does not promise to recognize all of these relationships either, but can only expand upon
Person’s limitations by additionally capturing general monotonic relationships.

1 0.8 0.4 0 -0.4 -0.8 -1

0 0 0 0 0 0 0

Figure 4.2: Various datasets and their respective Pearson coefficients

The question therefore is, if we can develop a model class that uses correlation as quality
measure, but has fewer limitations and assumptions on the distribution of the target
data.

Spearman’s rs [22] or Kendall’s τ [23] both offer a measurement of the correlation of
ranks, which can measure whether two targets have a monotonic relationship, thus mak-
ing them also capable of capturing some non-linear relationships. Additionally they don’t
rely on assumptions for the distribution of targets. Another measurement of rank corre-
lation is Goodman and Kruskal’s γ [24]. We investigate if there are relevant differences
between these coefficients, that would make one preferable over to other for a model
class based on rank correlation.

4.2 Standard Correlation Measures

In general, the population correlation coefficient is denoted by ρ. However, it is never
truly known, and thus many researchers have tried to develop estimators based on a
sample from the population. We present some of the most widely used and established
sample correlation coefficients in the following sections.
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4 The Rank Correlation Model Class

4.2.1 Pearson’s r

Probably the most commonly used method to compute correlation is Pearson’s product-
moment correlation coefficient, often denoted as r. It measures the linear dependence of
two variables.

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2

4.2.2 Spearman’s rs

Spearman’s rank correlation coefficient (usually denoted as ρ but also as rs, we will use
rs to avoid confusion with the population correlation coefficient of a dataset) has been
developed by Charles Spearman [22] and uses the difference between rankings of a pair
xi and yi as a statistic to measure the (rank) correlation.

rs = 1−
6
∑

i d
2
i

n(n2 − 1)
(4.1)

Where di is the difference between the ranks of xi and yi

If there are no ties present, this is equivalent to computing the Pearson coefficient over
the ranks of the data. With Ri and Si corresponding to the ranks of xi and yi and R̄
and S̄ describing their respective means, we can thus write:

rs =

∑
(Ri − R̄)(Si − S̄)√∑

(Ri − R̄)2
∑

(Si − S̄)2
(4.2)

In the case of ties, Conover [25] suggest using Equation (4.2). If the number of ties is at
most moderate, Equation (4.1) will still function a good approximation and should be
preferred due to its computational simplicity.

4.2.3 Kendall’s τ

While Spearman uses the difference of rank in individual pairs, Kendall’s τ , named after
Maurice Kendall [23], defines a statistic based on the agreement (concordances) of ranks
to measure the correlation of a sample, making it less sensitive to outliers.

Definition 6
A pair (xi, yi), (xj , yj) is said to be concordant if (xi < xj) ∧ (yi < yj)
or (xi > xj) ∧ (yi > yj) hold, and discordant if this is not the case. Two observations
are tied if xi = xj and/or yi = yj .
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4.2 Standard Correlation Measures

The total number of pairs that can be constructed for a sample size of n is M =
(
n
2

)
=

n(n− 1)/2. For the following coefficients we define a number of values:

Definition 7

C = number of concordant pairs

D = number of discordant pairs

Tx = number of pairs tied only on the x-value

Ty = number of pairs tied only on the y-value

Txy = number of pairs tied both on the x- and y-value

Therefore, we can decompose M as: M = C +D + Tx + Ty + Txy.

We will see that several correlation measures exist, which make use of the numerator
C-D but differ in the normalizing denominator.

Tau a

τa measures the difference between concordant and discordant pairs, in relation to the
number of all possible pairs. Because ties are not taken into account, τa is rarely used.

τa =
C −D
M

Tau b

τb is the most widely applied version of Kendall’s measure. In contrast to τa, it accounts
for ties by normalizing with a term expressing the geometric mean between the number
of untied pairs on the x-value (i.e., C + D + Ty) and the number untied on the y-value
(i.e., C +D + Tx).

τb =
C −D√

(C +D + Tx)(C +D + Ty)

Tau c

If applied to asymmetric contingency tables, τb cannot reach -1 or 1 anymore, making its
interpretation difficult. τc is an adjustment to this limitation, with k being the minimum
of the number of rows and columns.
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4 The Rank Correlation Model Class

τc =
2k(C −D)

(k − 1)n2

4.2.4 Goodman and Kruskal’s γ

Gamma is almost identical in its measurement to τa but ignores ties.

γ =
C −D
C +D

4.2.5 Somers’ D

Somers’ D is a modification of τb, developed by Somers [26]. If there are no ties, D is
equal to Goodman and Kruskal’s γ.

Asymmetric

For the asymmetric version only one variable is considered to be independent, while the
other one is considered to be dependent. The asymmetric version of Somers’ D differs
from τb in that it only adjusts for tied pairs on the independent variable.

D =
C −D

C +D + Tx
(X dependent)

D =
C −D

C +D + Ty
(Y dependent)

Symmetric

The symmetric version of Somers’ D differs from τb in that it uses the arithmetic mean
between the number of pairs not tied on the x- and y-value to account for ties, instead
of the geometric mean.

D =
C −D

C +D + (Tx + Ty)/2
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4.2 Standard Correlation Measures

4.2.6 Comparison

Several measures use the difference in concordant and discordant pairs to gauge cor-
relation, but differ in the way they normalize this statistic. We choose Kendall’s τb to
represent those measures, as it is the most prevalent and takes ties into account.

Although it is common to view the presented rank correlation coefficients as alternatives
to Pearson’s coefficient, as we can see by the definitions above, this notion has little
mathematical justification. We will therefore keep in mind, that they shoud rather be
regarded as measures for different kinds of associations.

4.2.7 Rank Correlation as a Quality Measure for EMM

In order to define a quality measure we have to answer the question: when is a subgroup
more or less interesting than another?

A simple idea could be the direct comparison of the correlation coefficients for the sub-
group and its complement. The bigger the difference between a subgroup and its comple-
ment, the more interesting it is. However, as indicated in Section 2.2, a quality measure
should also consider the support of the subgroup (i.e., the number of records it covers)
to prevent overfitting. As it is usually relatively easy to generate small subgroups with
extreme correlation values (−1, 1 or 0) and thus probably also creating extreme differ-
ence values. When we get a big difference in correlation we would also like to know if it
is significant at all. What we want to test is thus :

H0 : ρ1 = ρ2 against H1 : ρ1 6= ρ2

for two groups of data (e.g., a subgroup and its complement).

A standard procedure to test for difference between independent Pearson correlations is
to perform a Fisher z-transformation on both values to make them normally distributed.

Definition 8
Given a Pearson correlation coefficient r, Fisher’s z-transformation is defined as:

z = 1
2 ln

(
1+r
1−r

)
= arctanh(r)

The transformed value z is normally distributed with variance varz = 1
n−3 .

We can then treat the difference between the transformed values as a random normal
variable, with mean zero and variance varρ1-ρ2 = 1

n1−3 + 1
n2−3 . By comparing it with a

standard normal distribution, a p-value for the difference can then be calculated. Even if
the distribution of the z-score is not strictly normal, it tends to normality rapidly as the
sample size increases for any value of the actual population correlation coefficient [27].
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4 The Rank Correlation Model Class

Fieller [28] has tried to transfer this approach for comparisons of Kendall’s τ and Spear-
man’s rs. His experiments suggested the following variances for the transformed values:

varrs = 1.06
n−3 and varτ = 0.437

n−4

4.3 Limitations?

A direct limitation for applying this model class stems from the fact that we are using
correlation as a quality measure, where target attributes can only be numeric. Datasets
are thus restricted to have at least two numerical attributes.

Since our test of difference is only applicable to independent datasets, we have to compare
a subgroup with its complement, as comparing with the whole dataset (which includes
the subgroup data) would violate the independence assumption.

A limitation of the Pearson coefficient is that it assumes a bivariate normal distribution
over the two variables to compare. While the other presented correlation measures do not
have this assumption, indirectly it comes into play again when applying the slight mod-
ifications of the Fisher z-transformation presented in [28], because these again assume
a normal distribution of the underlying population. However, Fieller argues, that this
might not be a necessary assumption: “The results [...] can clearly be extended to a much
wider class of parental distributions”. His experiments support that this assumption is
reasonable, but since his test only included datasets having between 10 and 50 samples,
he thus notes for bigger samples that this “is a field in which further investigation would
be of considerable interest” [28, Page 3]. Sadly, to our best knowledge, almost 50 years
later, no further investigation has happened as of today.
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5 Implementation

We choose to implement the (rank) correlation model class for EMM in the data min-
ing platform RapidMiner (http://www.rapidminer.com/). This EMM extension for
RapidMiner is available under: https://bitbucket.org/lennardo/rancor-emm

Apart from the direct implementation of the top-q Exceptional Model Mining algorithm,
important components of the implementation are:

QualityMeasure: an Interface for defining your own quality measure.

EMMCondition: a comparable single condition for our subgroup descriptions, extend-
ing on RapidMiner’s AttributeValueFilterSingleCondition class.

RefinementOperator: an interface that can be used to define how a subgroup should
be refined.

Subgroup: a class encapsulating all relevant information like the coverage, measure
value and the list of conditions describing a subgroup.

5.1 Computation of Kendall’s tau

A direct computation of the numerator for Kendall’s τ would require two nested iter-
ations, resulting in a complexity of O(n2). A faster algorithm for computing Kendall’s
τ has been developed in [29]. The approach is built on the concept of merge sort and
has a resulting complexity of O(n · log n). Other efficient ways (but none better than
O(n · log n)) are detailed in [30]. For our implementation we choose Knight’s algorithm.

5.2 RapidMiner Operator

The Operator can be configured via the following parameters:

• first and second target attribute;

• correlation type;

• number of results;

• min and max support level;

• min and max number of conditions defining the subgroups.
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5 Implementation

Furthermore the following “expert” parameters are available for users who are familiar
with the underlying algorithm:

• beam width;

• search depth;

• number of bins (for refining numeric attributes);

• defining limits for the measure value.
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6 Experiments

6.1 Design

For the experiments, several datasets have been used to compare the newly developed
model classes with the standard Pearson Correlation Model Class. We choose to com-
pare the results of the existing Pearson measure, Spearman’s rs and Kendall’s τb. Good-
man/Kruskal’s γ was not considered; as shown in Section 4.2 it is quite similar to τb in its
interpretation and computation. We therefore have rs and τb representing two different
standard approaches of calculating rank correlation values.

To test and evaluate the proposed model classes and their different quality measures,
experiments based on datasets like the Iris dataset offered by the UCI repository [31] were
performed. The goal was to investigate differences and to see if the theoretical benefits
had any impact in practice, i.e., if the proposed model classes could find (relevant)
subgroups on additional/fewer underlying concepts.

6.2 Experimental Results

6.2.1 Windsor Housing

The Windsor housing dataset contains 546 samples of houses that were sold in Windsor,
Canada in 1987. Each sample consists of 12 attributes such as the lot size, the prize it
was sold for, number of bathrooms, and whether the house was located in a preferable
area.

The experimental results for the Spearman and Pearson measures confirm the experi-
ments performed on the Windsor Housing dataset in [1], as both return the description:

D1 : fb >= 2 ∧ rec = 1 ∧ drv = 1

Which describes a group of 35 houses that have a driveway, a recreation room and at
least two bathrooms. Leman et al. reason that D1 might describe “houses in the higher
segments of the market where the price of a house is mostly determined by its location
and facilities. The desirable location may provide a natural limit on the lot size, such
that this is not a factor in the pricing.”
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6 Experiments

Subgroup ϕ r n

fb <= 2 ∧ drv = 1 ∧ sty <= 2 0.99993 0.4740 383
bdms >= 3 ∧ rec = 1 ∧ drv = 1 0.99992 0.1186 77

fb >= 2 ∧ rec = 1 ∧ drv = 1 0.99989 -0.0894 35

Table 6.1: Housing: top-3 subgroups for Pearson

Subgroup ϕ rs n

fb >= 2 ∧ rec = 1 ∧ drv = 1 0.9999823 -0.1385 35
fb <= 1 ∧ drv = 1 ∧ ca = 0 0.9999821 0.4319 247

fb >= 2 ∧ rec = 1 ∧ bdms >= 3 0.9999781 -0.0932 36

Table 6.2: Housing: top-3 subgroups for Spearman

Subgroup ϕ τb n

fb = 1 ∧ drv = 1 1 0.370 341
bdms <= 3 ∧ drv = 1 ∧ reg = 0 1 0.3329 277
bdms <= 3 ∧ drv = 1 ∧ ca = 0 1 0.31993 261

Table 6.3: Housing: top-3 subgroups for Kendall

6.2.2 Contraceptive Method Choice

This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey.
The dataset contains 1473 samples of married women who were either not pregnant or
did not know if they were at the time of interview.

One assumption could be that women with a higher education are more likely to employ
long term contraception methods than women with a lower education and therefore
also plan their pregnancy, resulting in motherhood at an older age. To investigate this
assumption we selected Wife’s age and Number of children ever born as target attributes.

The results from both Pearson and Spearman are similar and describe women with high
education that employ long term contraception methods, thus supporting our assumption
of correlation between education and employed contraception method.

Kendall finds description for groups, where education in both partners is lower. The
correlation between a womens age and the number of children born in those groups
is less then in their complements, confirming our assumption again, but from another
angle.
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6.2 Experimental Results
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6 Experiments

6.2.3 Iris

The Iris flower dataset (introduced by Fisher [32]), contains 150 samples from three
different species of Iris flowers (Setosa, Versicolor and Virginica). Each sample has been
examined with respect to four quantities: Sepal length, Sepal width, Petal length and
Petal width. Sepal and Petal are characteristic leaves of a flowering plant.

Experiments with the Iris dataset show that descriptions are found, which separate the
data with respect to their class. Pearson and Spearman both find rules that exclude
samples that are classified as setosa, while the Kendall class mirrors this behavior by
returning subgroups consisting only of examples classified as setosa. The following tables
and figures illustrate the experiment with target attributes petallength and sepallength.
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Figure 6.1: Iris dataset
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Figure 6.2: petalwidth >= 0.5 ∧ sepalwidth >= 2.2
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6 Experiments

In this experiment we could observe the same behavior as in the Contraceptive Method
Choice dataset, as here again Pearson and Spearman’s measures report more or less
similar subgroups and relationships, while Kendall’s measure returns subgroups whose
targets do not feature any relationship as opposed to their complements.

Looking at the distribution of the classes (Figure 6.3 and 6.4), our results agree with
previous experiments on this dataset that found the setosa class to be linearly separable
from virginica and versicolor. Fisher noted e.g., “It will be noticed [...] that there is some
overlap of the distributions of I. virginica and I. versicolor, so that a certain diagnosis
of these two species could not be based solely on these four measurements [...]” [32].

Iris−setosa Iris−versicolor Iris−virginica
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Figure 6.3: Iris: class distribution in the best subgroup (Pearson)

Iris−setosa Iris−versicolor Iris−virginica
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Figure 6.4: Iris: class distribution in the best subgroup (Kendall)
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6.2 Experimental Results

6.2.4 Higgs Boson Challenge

The Higgs boson is an elementary particle, which has recently been confirmed by exper-
iments and is considered to be the particle (quantum) that provides other particles with
mass.

The ATLAS experiment at CERN provided simulated data used by physicists as a chal-
lenge to optimize the analysis of the Higgs boson. It contains a set of 250000 simulated
proton collision (so-called events), which are characterized by a set of measured quanti-
ties, such as the energy momentum of the particle or spacial coordinates of the resulting
quarks. All quantities and their respective meanings can be found in the documentation
[33]. The goal of the challenge is to improve classification of events. However, classifi-
cation is not our primary goal and we will more generally explore whether we can find
subgroups in the data, that appear interesting (based on their scatterplots).

For the experiments the attributes “Weight”, “Label” and “Event ID” were excluded
from the datasets, as they only served classification and identification purposes of the
dataset. We also omitted all derived values (values starting with DER) as they are sim-
ply derived from the also present primitive values and should therefore not contribute
significant knowledge about the relations of the measured quantities. Additionally we im-
posed a restriction on the size of the subgroup, allowing only subgroups with a maximum
coverage of 2000 samples. Otherwise the found subgroups were too big and a sensible
interpretation of their respective scatterplots was not possible.

Testing the Cern datasets, we again get results indicating that the Spearman and Pear-
son Correlation Classes will produce similar results. As an example we present the
found subgroups for gauging the relationship between the attributes “PRI tau pt” and
“PRI tau eta”. The choice here is arbitrary as the drawn conclusion fit any of the exper-
iments we did on different attributes. In Table 6.10 and Table 6.11 we present the top-3
subgroups found by the Pearson and the Spearman Correlation Model Class, respectively.
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Figure 6.5: Subgroup corresponding to rule: PRI lep eta <= -1.99 ∧
PRI jet leading pt >= 134.551
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Figure 6.6: Cern: complement of the subgroup presented in figure 6.5

In Figure 6.5 we can see a concentration in the lower left corner as opposed to the
structure of the complement in Figure 6.6. This concentration suggests an interesting
subgroup. However, for thorough interpretation a domain expert should be considered.
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7 Conclusions

In this thesis we explored the possibilities of replacing the Person Correlation Model
Class with a Rank Correlation based Model Class to see if this would “improve” the
performance. We therefore chose to examine two of the most popular rank correlation
coefficients.

In the experiments the Spearman Correlation measure performed similar to the Pearson
Correlation measure. We can therefore at least recommend it as an alternative as it seems
to be as strong as Pearson’s correlation in detecting subgroups with linear relationship.
Whether it can find subgroups with relationships beyond linear ones is still unknown.
In our experiments we could not observe any behavior to indicate this, but at least the
mathematical background suggests that it should also capture them.

Not an alternative but a different quality measure can be created with Kendall’s corre-
lation. In the experiments the results for this class somewhat complemented the results
of the two aforementioned measures; Spearman and Pearson return subgroups that have
some sort of linear relationship as opposed to their complements. Kendall’s measure on
the other hand returns subgroups having little or no correlation, while their complements
do.

It might therefore be useful to apply Kendall’s correlation when the subgroups found
with Pearson or Spearman do not show the desired result. In general, Kendall seems to
find subgroups that show no real relationship compared to the complement, therefore
more or less filtering those groups, that do not observe any quantifiable relationship.

Another use could simply be to get a different view on the dataset in question, as sug-
gested at the end of Section 4.2.6, since Kendall essentially measures different quantities
than Pearson/Spearman.

7.1 Outlook

Possible alternatives to the presented models, that could be investigated in the future,
are the application of more experimental measures like dCor, MIC or other correla-
tion quantifiers mentioned in Chapter 3. However, for a good quality measure it would
also be necessary to investigate ways to compare these statistics on different subsets
of datasets. Regardless of other measures, the (indirect) assumption of an underlying
normal distribution could be removed by applying the bootstrapping method used for
permutation tests. With this approach the underlying distribution of the applied corre-
lation coefficient is estimated through re-sampling from the dataset a fixed number of
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7.1 Outlook

times. This estimation then can be used for a statistical test of difference in the applied
correlation measure. However, as this approach is computationally expensive, it will only
provide an alternative for smaller datasets and is unsatisfactory as a general approach
for correlation-based Exceptional Model Mining.

As mentioned in Section 3.1.2, another direction could be to experiment with an ex-
haustive algorithm. For this approach, a valuation basis for the GP-Growth algorithm,
proposed by Lemmrich et al. [5], could be developed. It would be interesting to see if an
exhaustive approach for these models yields different results.

A slight modification of the implemented version could be derived from a paper written
by Wilcox [34], who examines a new method of computing confidence intervals for the
difference of two Pearson correlation coefficients proposed by Zou [35]. The general idea
is to use Fisher’s z-transformation to compute confidence intervals for the individual
correlations. From those, a confidence interval for ρ1−ρ2 can be computed. The described
method might very well be adapted for Spearman’s and Kendall’s correlation, as both
can be Fisher z-transformed. Further investigation here might result in more statistically
backed-up results.
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[4] F. Herrera, C. J. Carmona, P. González, and M. J. Jesus, “An overview on subgroup
discovery: foundations and applications,” Knowl. Inf. Syst., vol. 29, pp. 495–525,
2010.

[5] F. Lemmerich, M. Becker, and M. Atzmueller, “Generic pattern trees for exhaustive
exceptional model mining,” in Proceedings of the 2012 European Conference on
Machine Learning and Knowledge Discovery in Databases - Volume Part II, ECML
PKDD’12, pp. 277–292, Springer-Verlag, 2012.

[6] M. Mampaey, S. Nijssen, A. Feelders, and A. Knobbe, “Efficient algorithms for
finding richer subgroup descriptions in numeric and nominal data,” in IEEE Int.
Conf. Data Min., pp. 499—-508, 2012.

[7] W. Klösgen, “Explora: a Multipattern and Multistrategy Discovery Assistant,” Adv.
Knowl. Discov. data Min., pp. 249–271, 1996.

[8] S. Wrobel, “An Algorithm for Multi-Relational Discovery of Subgroups,”Lect. Notes
Comput. Sci., vol. 1263, pp. 78–87, 1997.

[9] M. van Leeuwen, “Maximal Exceptions with Minimal Descriptions,” Data Min.
Knowl. Discov., vol. 21, pp. 259–276, July 2010.

[10] M. Clark, “A Comparison Of Correlation Measures,” tech. rep., University of Notre
Dame, 2013.

[11] W. Hoeffding, “A Non-Parametric Test of Independence,” Ann. Math. Stat., 1948.

[12] J. R. Blum, J. Kiefer, and M. Rosenblatt, “Distribution Free Tests of Independence
based on the Sample Distribution Function,” Ann. Math. Stat., 1961.

[13] M. Hollander and D. Wolfe, Nonparametric Statistical Methods. Wiley Series in
Probability and Statistics, Wiley, 2nd ed., 1999.

36



Bibliography
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