

Distributed Monitoring of the *R*² Statistic for Linear Regression

Kanishka Bhaduri¹, Kamalika Das², Chris Giannella³

¹MCT Inc@NASA Ames, ²SGT Inc@NASA Ames, ³MITRE Corp

TU Dortmund Seminar

July 14, 2011

Roadmap

Introduction

- Problem statement and solutions
- 3 Distributed R^2 monitoring
- OReMo algorithm
- 5 Experimental results

Input (X)			Output (\overrightarrow{y})
<i>x</i> _{1,1}	<i>x</i> _{1,2}		<i>y</i> 1
<i>x</i> _{2,1}	<i>x</i> _{2,2}		<i>y</i> 2
÷	÷	÷	:

Input (X)			Output (\overrightarrow{y})
<i>x</i> _{1,1}	<i>x</i> _{1,2}		<i>y</i> 1
<i>x</i> _{2,1}	<i>x</i> _{2,2}		<i>y</i> 2
÷	÷	÷	:

- Learn f: a function from \mathbb{R}^d to \mathbb{R}
- For linear models, $\hat{y} = f(\vec{x}) = a_0 + x_{.,1} * a_1 + x_{.,2} * a_2 + x_{.,3} * a_3 + \dots$

Input (X)			Output (\overrightarrow{y})
<i>x</i> _{1,1}	<i>x</i> _{1,2}		<i>y</i> 1
<i>x</i> _{2,1}	<i>x</i> _{2,2}		<i>y</i> 2
÷	:	:	-

- Learn f: a function from \mathbb{R}^d to \mathbb{R}
- For linear models, $\hat{y} = f(\vec{x}) = a_0 + x_{.,1} * a_1 + x_{.,2} * a_2 + x_{.,3} * a_3 + \dots$

 $\overrightarrow{a} = \left(X^{T}X\right)^{-1}X^{T}y$

R² statistic

$$R^2 = 1 - rac{\sum_{j=1}^{M} (y_j - \hat{y}_j)^2}{\sum_{j=1}^{M} \left(y_j - rac{\sum_{j=1}^{n} y_j}{M}
ight)^2}$$

R^2 statistic

$$R^2 = 1 - rac{\sum_{j=1}^{M} (y_j - \hat{y}_j)^2}{\sum_{j=1}^{M} \left(y_j - rac{\sum_{j=1}^{n} y_j}{M}
ight)^2}$$

- For perfect models, $y_j = \hat{y}_j \Rightarrow R^2 = 1$
- For bad (average) models, $\hat{y}_j = \frac{\sum_{j=1}^n y_j}{M} \Rightarrow R^2 = 0$

What's new?

- The data is distributed across a large number of sites/nodes/machines
 - $X = X_1 \cup \cdots \cup X_n$
- X is time varying

Figure: Geographically distributed data centers (Image source: http://verycloud.com/default.aspx)

- Real-time fault detection/health assessment in enterprise-scale data centers on the cloud
 - Microsoft Cloud computing infrastructure, Amazon EC2
- Carbon footprint monitoring for Smart grid connected infrastructures
- Useful for distributed systems with very little centralized control

• Given:

- data X_1, \ldots, X_n at each node
- threshold 0 < ϵ < 1 (same at all nodes)
- a reliable, ordered, communication infrastructure
- precomputed \overrightarrow{a} at an earlier timestamp
- Maintain:
 - regression model \overrightarrow{a} , such that $R^2 > \epsilon$

NASA

• Given:

- data X_1, \ldots, X_n at each node
- threshold 0 < ϵ < 1 (same at all nodes)
- a reliable, ordered, communication infrastructure
- precomputed \overrightarrow{a} at an earlier timestamp
- Maintain:
 - regression model \overrightarrow{a} , such that $R^2 > \epsilon$

Solutions

- Periodic algorithms
- Incremental algorithms
- Reactive event-based algorithms

• Given:

- data X_1, \ldots, X_n at each node
- threshold 0 < ϵ < 1 (same at all nodes)
- a reliable, ordered, communication infrastructure
- precomputed \overrightarrow{a} at an earlier timestamp
- Maintain:
 - regression model \overrightarrow{a} , such that $R^2 > \epsilon$

Solutions

- Periodic algorithms: wastes resources
- Incremental algorithms: most efficient, difficult to develop
- Reactive event-based algorithms: simple, yet efficient

- Define a local vector $\overrightarrow{v'}$ at node P_i based on y and \hat{y}
- Define a parabola $g: \overrightarrow{eta} \in \mathbb{R}^2 \mapsto eta_1 (1-\epsilon)eta_2^2$

- Define a local vector $\overrightarrow{v^i}$ at node P_i based on y and \hat{y}
- Define a parabola $g: \overrightarrow{eta} \in \mathbb{R}^2 \mapsto eta_1 (1-\epsilon)eta_2^2$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} (y_{j}^{i} - \hat{y}_{j}^{i})^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} \left(y_{j}^{i} - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} y_{j}^{i}}{M}\right)^{2}}$$

- Define a local vector $\overrightarrow{v^i}$ at node P_i based on y and \hat{y}
- Define a parabola $g: \overrightarrow{eta} \in \mathbb{R}^2 \mapsto eta_1 (1-\epsilon)eta_2^2$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} (y_{j}^{i} - \hat{y}_{j}^{i})^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} \left(y_{j}^{i} - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} y_{j}^{i}}{M}\right)^{2}}$$

$$R^{2} > \epsilon \quad \Leftrightarrow \quad g\left(\sum_{i=1}^{n} \left(\frac{m(i)}{M}\right) \overrightarrow{v^{i}}\right) > 0$$
$$\Leftrightarrow \quad g\left(\overrightarrow{v^{G}}\right) > 0$$

- Define a local vector $\overrightarrow{v^i}$ at node P_i based on y and \hat{y}
- Define a parabola $g: \overrightarrow{eta} \in \mathbb{R}^2 \mapsto eta_1 (1-\epsilon)eta_2^2$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} (y_{j}^{i} - \hat{y}_{j}^{i})^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} \left(y_{j}^{i} - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} y_{j}^{i}}{M}\right)^{2}}$$

$$R^{2} > \epsilon \quad \Leftrightarrow \quad g\left(\sum_{i=1}^{n} \left(\frac{m(i)}{M}\right) \overrightarrow{v'}\right) > 0$$
$$\Leftrightarrow \quad g\left(\overrightarrow{v^{G}}\right) > 0$$

Still inefficient to compute $\overrightarrow{v^G}$ at each timestamp...

Geometric interpretation

Figure: g and half-spaces

- $\overrightarrow{v^i}$ inside parabola for all $P_i \Rightarrow \overrightarrow{v^G}$ is inside too
- Not true for outside parabola
- Use tangent lines to define half spaces outside parabola

Geometric interpretation

Figure: g and half-spaces

- $\overrightarrow{v^i}$ inside parabola for all $P_i \Rightarrow \overrightarrow{v^G}$ is inside too
- Not true for outside parabola
- Use tangent lines to define half spaces outside parabola

How to check for this global condition more efficiently?

Local statistics vectors

• Knowledge:
$$\overrightarrow{\mathcal{K}_{i}} = \overrightarrow{v^{i}} + \sum_{P_{i} \in N_{i}} \overrightarrow{\mathcal{S}_{j,i}}$$

• Agreement:
$$\overrightarrow{\mathcal{A}_{i,j}} = \overrightarrow{\mathcal{S}_{i,j}} + \overrightarrow{\mathcal{S}_{j,i}}$$

• Withheld:
$$\overrightarrow{\mathcal{H}_{i,j}} = \overrightarrow{\mathcal{K}_i} - \overrightarrow{\mathcal{A}_{i,j}}$$

• Message:
$$\overrightarrow{S_{i,j}} = \overrightarrow{\mathcal{K}_i} - \overrightarrow{S_{j,i}}$$

Local statistics vectors

• Knowledge:
$$\overrightarrow{\mathcal{K}_{i}} = \overrightarrow{v'} + \sum_{P_{i} \in N_{i}} \overrightarrow{\mathcal{S}_{j,i}}$$

• Agreement:
$$\overrightarrow{\mathcal{A}_{i,j}} = \overrightarrow{\mathcal{S}_{i,j}} + \overrightarrow{\mathcal{S}_{j,i}}$$

• Withheld:
$$\overrightarrow{\mathcal{H}_{i,j}} = \overrightarrow{\mathcal{K}_i} - \overrightarrow{\mathcal{A}_{i,j}}$$

• Message:
$$\overrightarrow{S_{i,j}} = \overrightarrow{\mathcal{K}_i} - \overrightarrow{S_{j,i}}$$

We show:
$$g\left(\overrightarrow{\mathcal{K}_{i}}\right) > 0 \Rightarrow g\left(\overrightarrow{v^{G}}\right) > 0$$
....removing the sum inside parabola

For each peer and each of its neighbors, if

•
$$\overrightarrow{\mathcal{K}_i} \in R$$

• $\overrightarrow{\mathcal{A}_{i,j}} \in R$

• $\mathcal{H}_{i,j} \in R$ where R is any convex region, then $\overrightarrow{v^G} \in R$

For each peer and each of its neighbors, if

•
$$\overrightarrow{\mathcal{K}_i} \in R$$

• $\overrightarrow{\mathcal{A}_{i,j}} \in R$

• $\overrightarrow{\mathcal{H}_{i,j}} \in R$

where *R* is any convex region, then $\overrightarrow{v^G} \in R$

Global condition $g\left(\overrightarrow{v^{G}}\right) \in R$ can be detected based solely on local conditions...

Figure: g and half-spaces

- Inside of parabola: $g(\overrightarrow{\beta}) > 0$, convex by definition
- Outside of parabola: define tangent lines to parabola $g(\vec{\beta}) = 0$, convex by construction

- Allows a node to terminate computation and communication whenever stopping condition is satisfied irrespective of other conditions
- Still guarantees eventual correctness
- Remarkably efficient in pruning messages
- Allows a node to sit idle until an event occurs:
 - send or receive message
 - change in local data X_i
 - change in node neighborhood

DReMo flowchart

Monitoring algorithm:

- **1** Input: local dataset, error threshold ϵ
- **2** Goal: monitor $R^2 \ge \epsilon$
- Initialization
 - $\overrightarrow{v_i}$
 - Compute sufficient statistics vectors
 - Define convex regions

Figure: DReMo flowchart

Re-computing models: convergecast

- Monitoring algorithm raises an alarm on correct detection
- For closed-loop solution, rebuild model in-network
- Correctness of monitoring algorithm minimizes false dismissals and false alarms

$$X^{T}X = \sum_{i=1}^{n} X_{i}^{T}X_{i} \qquad X^{T}y = \sum_{i=1}^{n} X_{i}^{T}y_{i}$$
$$\overrightarrow{a} = \left(\sum_{i=1}^{n} X_{i}^{T}X_{i}\right)^{-1} \left(\sum_{i=1}^{n} X_{i}^{T}y_{i}\right)$$

Re-computing models: convergecast

- Monitoring algorithm raises an alarm on correct detection
- For closed-loop solution, rebuild model in-network
- Correctness of monitoring algorithm minimizes false dismissals and false alarms

$$X^{T}X = \sum_{i=1}^{n} X_{i}^{T}X_{i} \qquad X^{T}y = \sum_{i=1}^{n} X_{i}^{T}y_{i}$$
$$\overrightarrow{a} = \left(\sum_{i=1}^{n} X_{i}^{T}X_{i}\right)^{-1} \left(\sum_{i=1}^{n} X_{i}^{T}y_{i}\right)$$

Figure: Convergecast

• Each peer has a fixed length data buffer (a sliding window)

Figure: Timing diagram

- For every odd epochs, peers are supplied same model as data generator (high R^2 value)
- For every even epochs, peers are supplied a different model as data generator (low R^2 value)

- For every odd epochs, peers are supplied same model as data generator (high R^2 value)
- For every even epochs, peers are supplied a different model as data generator (low R^2 value)

Figure: Dataset, accuracy and messages for *DReMo* algorithm in monitoring mode.

Figure: Convergence rate

Figure: Convergence rate

Figure: Scalability of DReMo

Experimental results: with convergecast

Figure: Accuracy and messages including convergecast

Application: smart grid CO₂ monitoring

Figure: Accuracy and messages of DReMo for smart grid data monitoring

- First work on monitoring R^2 for distributed data
- Algorithm is provably correct, highly efficient and converges to the correct result very fast
- R² is scale-free
- Potential applications in many domains

- K. Bhaduri, K. Das, C. Giannella. Distributed Monitoring of the R² Statistic for Linear Regression. SDM. pp. 438-449. 2011.
- R. Wolff, K. Bhaduri, H. Kargupta. A Generic Local Algorithm for Mining Data Streams in Large Distributed Systems. IEEE TKDE. Volume 21, Issue 4, pp. 465-478. 2009.
- K. Bhaduri, H. Kargupta. A Scalable Local Algorithm for Distributed Multivariate Regression. SAM J. Volume 1, Issue 3, pp 177-194. 2008.

Algorithms for Speeding up Distance-Based Outlier Detection

Kanishka Bhaduri¹, Bryan Matthews², Chris Giannella³

¹MCT Inc@NASA Ames, ²SGT Inc@NASA Ames, ³MITRE Corp

TU Dortmund Seminar

July 14, 2011

1 Introduction

2 Background

- 3 Contributions
- 4 Algorithms
- 5 Experimental results

Given a dataset D:

t	Speed		Alt
1	100		1000
2	100.3		1002
:	:	:	÷

Distance-based outliers

Find all rows (instances) which are outliers

What is an outlier?

- Many definitions exist
- We use distance-based outlier

What is an outlier?

- Many definitions exist
- We use distance-based outlier

Distance-based outliers

A point is an outlier if it is very far from its nearest neighbors

Figure: Distance-based outlier (red point)

- For each point find the distance to its nearest neighbor (or k nearest neighbors)
- Sort the points in descending order based on this distance to its nearest neighbor
- These are the ranked outliers

- For each point find the distance to its nearest neighbor (or k nearest neighbors)
- Sort the points in descending order based on this distance to its nearest neighbor
- These are the ranked outliers

Computational complexity

Quadratic with respect to the number of points

- Problem relaxation: find only the top t outliers
- Algorithm maintains a cutoff threshold which is set to the score of the smallest outlier
- For each point, keep finding nearest neighbors until one is found less than the threshold
- Prune that point since it cannot be an outlier
- Disk-based implementation can handle any size of data
- Published by Bay and Schwabacher in KDD'03

- Problem relaxation: find only the top t outliers
- Algorithm maintains a cutoff threshold which is set to the score of the smallest outlier
- For each point, keep finding nearest neighbors until one is found less than the threshold
- Prune that point since it cannot be an outlier
- Disk-based implementation can handle any size of data
- Published by Bay and Schwabacher in KDD'03

Computational complexity

On average, near-linear with respect to the number of points

- Centralized iOrca improves upon the Orca using a novel indexing scheme
- Early termination criteria allows algorithm to stop without accessing all data points
- Distributed outlier detection algorithms much faster than existing methods

- Update cutoff faster
- 2 Rearrange data in order to find the nearest neighbors approximately constant time
- 8 Avoid unnecessary disk access
- Build index fast without loading all data in memory

- Update cutoff faster
- Rearrange data in order to find the nearest neighbors approximately constant time
- 8 Avoid unnecessary disk access
- Build index fast without loading all data in memory

Figure: iOrca description

- Update cutoff faster
- Rearrange data in order to find the nearest neighbors approximately constant time
- 8 Avoid unnecessary disk access
- Build index fast without loading all data in memory

Figure: iOrca description

Can terminate even before looking at all the data!

Using distributed processing: iDOoR

- Nodes arranged in a ring
- Split data and assign to different nodes
- · Central node ships blocks of test data for testing
- Test blocks proceed across the nodes in a ring
- Cutoff updated at end of each full round

Figure: iDOor description

- Covertype: contains 581,012 instances and 10 features
- Landsat: contains 275,465 instances and 60 features
- MODIS: contains 15,900,968 instances and 7 features
- CarrierX: contains 97,814,864 instances and 19 features

Experimental results: performance of iOrca

Figure: Running time of iOrca

Figure: Cutoff increase of iOrca

Experimental results: running time of iDOoR

Figure: Running time of iDOoR vs iOrca

- Both sequential and distributed outlier detection methods that are significantly more efficient than existing methods
- Algorithms are provably correct
- *iOrca* and *iDOor* can terminate even before looking at all the test points
- Potential applications in many domains

Acknowledgements: NASA SSAT project

Resources:

- http://ti.arc.nasa.gov/profile/kbhaduri/
- https://c3.ndc.nasa.gov/dashlink/