
Distributed Monitoring of the R2 Statistic for Linear
Regression

Kanishka Bhaduri1, Kamalika Das2, Chris Giannella3

1MCT Inc@NASA Ames, 2SGT Inc@NASA Ames, 3MITRE Corp

TU Dortmund Seminar

July 14, 2011

1/23

Roadmap

1 Introduction

2 Problem statement and solutions

3 Distributed R2 monitoring

4 DReMo algorithm

5 Experimental results

6 Conclusion

Roadmap 2/23

Introduction

Input (X) Output (−→y)

x1,1 x1,2 . . . y1
x2,1 x2,2 . . . y2

...
...

...
...

• Learn f : a function from Rd to R
• For linear models, ŷ = f (−→x) = a0 + x·,1 ∗ a1 + x·,2 ∗ a2 + x·,3 ∗ a3 + . . .

−→a =
(
XTX

)−1
XT y

Introduction 3/23

Introduction

Input (X) Output (−→y)

x1,1 x1,2 . . . y1
x2,1 x2,2 . . . y2

...
...

...
...

• Learn f : a function from Rd to R
• For linear models, ŷ = f (−→x) = a0 + x·,1 ∗ a1 + x·,2 ∗ a2 + x·,3 ∗ a3 + . . .

−→a =
(
XTX

)−1
XT y

Introduction 3/23

Introduction

Input (X) Output (−→y)

x1,1 x1,2 . . . y1
x2,1 x2,2 . . . y2

...
...

...
...

• Learn f : a function from Rd to R
• For linear models, ŷ = f (−→x) = a0 + x·,1 ∗ a1 + x·,2 ∗ a2 + x·,3 ∗ a3 + . . .

−→a =
(
XTX

)−1
XT y

Introduction 3/23

Goodness-of-fit: coefficient of determination R2

R2 statistic

R2 = 1−
∑M

j=1(yj−ŷj)2∑M
j=1

(
yj−

∑n
j=1

yj

M

)2

• For perfect models, yj = ŷj ⇒ R2 = 1

• For bad (average) models, ŷj =
∑n

j=1 yj
M ⇒ R2 = 0

Introduction 4/23

Goodness-of-fit: coefficient of determination R2

R2 statistic

R2 = 1−
∑M

j=1(yj−ŷj)2∑M
j=1

(
yj−

∑n
j=1

yj

M

)2

• For perfect models, yj = ŷj ⇒ R2 = 1

• For bad (average) models, ŷj =
∑n

j=1 yj
M ⇒ R2 = 0

Introduction 4/23

What’s new?

• The data is distributed across a large number of
sites/nodes/machines
• X = X1 ∪ · · · ∪ Xn

• X is time varying

Figure: Geographically distributed data centers (Image source:
http://verycloud.com/default.aspx)

Introduction 5/23

http://verycloud.com/default.aspx

Motivation

• Real-time fault detection/health assessment in enterprise-scale data
centers on the cloud
• Microsoft Cloud computing infrastructure, Amazon EC2

• Carbon footprint monitoring for Smart grid connected infrastructures

• Useful for distributed systems with very little centralized control

Introduction 6/23

Problem statement and solutions

• Given:
• data X1, . . . ,Xn at each node
• threshold 0 < ε < 1 (same at all nodes)
• a reliable, ordered, communication infrastructure
• precomputed −→a at an earlier timestamp

• Maintain:
• regression model −→a , such that R2 > ε

Solutions
• Periodic algorithms

• Incremental algorithms

• Reactive event-based algorithms

Problem statement and solutions 7/23

Problem statement and solutions

• Given:
• data X1, . . . ,Xn at each node
• threshold 0 < ε < 1 (same at all nodes)
• a reliable, ordered, communication infrastructure
• precomputed −→a at an earlier timestamp

• Maintain:
• regression model −→a , such that R2 > ε

Solutions
• Periodic algorithms

• Incremental algorithms

• Reactive event-based algorithms

Problem statement and solutions 7/23

Problem statement and solutions

• Given:
• data X1, . . . ,Xn at each node
• threshold 0 < ε < 1 (same at all nodes)
• a reliable, ordered, communication infrastructure
• precomputed −→a at an earlier timestamp

• Maintain:
• regression model −→a , such that R2 > ε

Solutions
• Periodic algorithms: wastes resources

• Incremental algorithms: most efficient, difficult to develop

• Reactive event-based algorithms: simple, yet efficient

Problem statement and solutions 8/23

Reformulating R2 statistic

• Define a local vector
−→
v i at node Pi based on y and ŷ

• Define a parabola g :
−→
β ∈ R2 7→ β1 − (1− ε)β22

R2 = 1−
∑n

i=1

∑m(i)
j=1 (y ij − ŷ ij)2∑n

i=1

∑m(i)
j=1

(
y ij −

∑n
i=1

∑m(i)
j=1 y i

j

M

)2

R2 > ε ⇔ g

(
n∑

i=1

(
m(i)

M

)−→
v i

)
> 0

⇔ g

(−→
vG
)
> 0

Still inefficient to compute
−→
vG at each timestamp...

Distributed R2 monitoring 9/23

Reformulating R2 statistic

• Define a local vector
−→
v i at node Pi based on y and ŷ

• Define a parabola g :
−→
β ∈ R2 7→ β1 − (1− ε)β22

R2 = 1−
∑n

i=1

∑m(i)
j=1 (y ij − ŷ ij)2∑n

i=1

∑m(i)
j=1

(
y ij −

∑n
i=1

∑m(i)
j=1 y i

j

M

)2

R2 > ε ⇔ g

(
n∑

i=1

(
m(i)

M

)−→
v i

)
> 0

⇔ g

(−→
vG
)
> 0

Still inefficient to compute
−→
vG at each timestamp...

Distributed R2 monitoring 9/23

Reformulating R2 statistic

• Define a local vector
−→
v i at node Pi based on y and ŷ

• Define a parabola g :
−→
β ∈ R2 7→ β1 − (1− ε)β22

R2 = 1−
∑n

i=1

∑m(i)
j=1 (y ij − ŷ ij)2∑n

i=1

∑m(i)
j=1

(
y ij −

∑n
i=1

∑m(i)
j=1 y i

j

M

)2

R2 > ε ⇔ g

(
n∑

i=1

(
m(i)

M

)−→
v i

)
> 0

⇔ g

(−→
vG
)
> 0

Still inefficient to compute
−→
vG at each timestamp...

Distributed R2 monitoring 9/23

Reformulating R2 statistic

• Define a local vector
−→
v i at node Pi based on y and ŷ

• Define a parabola g :
−→
β ∈ R2 7→ β1 − (1− ε)β22

R2 = 1−
∑n

i=1

∑m(i)
j=1 (y ij − ŷ ij)2∑n

i=1

∑m(i)
j=1

(
y ij −

∑n
i=1

∑m(i)
j=1 y i

j

M

)2

R2 > ε ⇔ g

(
n∑

i=1

(
m(i)

M

)−→
v i

)
> 0

⇔ g

(−→
vG
)
> 0

Still inefficient to compute
−→
vG at each timestamp...

Distributed R2 monitoring 9/23

Geometric interpretation

Figure: g and half-spaces

•
−→
v i inside parabola for all Pi ⇒

−→
vG is inside too

• Not true for outside parabola

• Use tangent lines to define half spaces outside parabola

How to check for this global condition more efficiently?

Distributed R2 monitoring 10/23

Geometric interpretation

Figure: g and half-spaces

•
−→
v i inside parabola for all Pi ⇒

−→
vG is inside too

• Not true for outside parabola

• Use tangent lines to define half spaces outside parabola

How to check for this global condition more efficiently?

Distributed R2 monitoring 10/23

Local statistics vectors

• Knowledge:
−→
Ki =

−→
v i +

∑
Pj∈Ni

−→
Sj ,i

• Agreement:
−−→
Ai ,j =

−→
Si ,j +

−→
Sj ,i

• Withheld:
−−→
Hi ,j =

−→
Ki −

−−→
Ai ,j

• Message:
−→
Si ,j =

−→
Ki −

−→
Sj ,i

We show: g
(−→
Ki

)
> 0⇒ g

(−→
vG
)
> 0....removing the sum inside parabola

DReMo algorithm 11/23

Local statistics vectors

• Knowledge:
−→
Ki =

−→
v i +

∑
Pj∈Ni

−→
Sj ,i

• Agreement:
−−→
Ai ,j =

−→
Si ,j +

−→
Sj ,i

• Withheld:
−−→
Hi ,j =

−→
Ki −

−−→
Ai ,j

• Message:
−→
Si ,j =

−→
Ki −

−→
Sj ,i

We show: g
(−→
Ki

)
> 0⇒ g

(−→
vG
)
> 0....removing the sum inside parabola

DReMo algorithm 11/23

Global condition

For each peer and each of its neighbors, if

•
−→
Ki ∈ R

•
−−→
Ai ,j ∈ R

•
−−→
Hi ,j ∈ R

where R is any convex region, then
−→
vG ∈ R

Global condition g
(−→
vG
)
∈ R can be detected based solely on local

conditions...

DReMo algorithm 12/23

Global condition

For each peer and each of its neighbors, if

•
−→
Ki ∈ R

•
−−→
Ai ,j ∈ R

•
−−→
Hi ,j ∈ R

where R is any convex region, then
−→
vG ∈ R

Global condition g
(−→
vG
)
∈ R can be detected based solely on local

conditions...

DReMo algorithm 12/23

Convex regions

Figure: g and half-spaces

• Inside of parabola: g(
−→
β) > 0, convex by definition

• Outside of parabola: define tangent lines to parabola g(
−→
β) = 0,

convex by construction

DReMo algorithm 13/23

Local criterion

• Allows a node to terminate computation and communication
whenever stopping condition is satisfied irrespective of other
conditions

• Still guarantees eventual correctness

• Remarkably efficient in pruning messages

• Allows a node to sit idle until an event occurs:
• send or receive message
• change in local data Xi

• change in node neighborhood

DReMo algorithm 14/23

DReMo flowchart
Monitoring algorithm:

1 Input: local dataset, error threshold ε
2 Goal: monitor R2 ≷ ε
3 Initialization

• −→vi
• Compute sufficient statistics vectors
• Define convex regions

Input Start

Initialization

Convex
Rule

Not satisfied?

Do nothing

Satisfied?

Messages
Send

Update vectors

Event detection

Yes

Event?

No

Figure: DReMo flowchart

DReMo algorithm 15/23

Re-computing models: convergecast

• Monitoring algorithm raises an alarm on correct detection

• For closed-loop solution, rebuild model in-network

• Correctness of monitoring algorithm minimizes false dismissals and
false alarms

XTX =
n∑

i=1

XT
i Xi XT y =

n∑
i=1

XT
i yi

−→a =

(
n∑

i=1

XT
i Xi

)−1(n∑
i=1

XT
i yi

)

Figure: Convergecast

DReMo algorithm 16/23

Re-computing models: convergecast

• Monitoring algorithm raises an alarm on correct detection

• For closed-loop solution, rebuild model in-network

• Correctness of monitoring algorithm minimizes false dismissals and
false alarms

XTX =
n∑

i=1

XT
i Xi XT y =

n∑
i=1

XT
i yi

−→a =

(
n∑

i=1

XT
i Xi

)−1(n∑
i=1

XT
i yi

)

Figure: Convergecast

DReMo algorithm 16/23

Experimental results: setup

• Each peer has a fixed length data buffer (a sliding window)

31,000 X10 Time

.....

EpochEpoch

Sub
Epoch

Sub
Epoch Sub

Epoch
Sub

Epoch

520 54050040200

Figure: Timing diagram

Experimental results 17/23

Experimental results: no convergecast

• For every odd epochs, peers are supplied same model as data
generator (high R2 value)

• For every even epochs, peers are supplied a different model as data
generator (low R2 value)

Figure: Dataset, accuracy and messages for DReMo algorithm in monitoring
mode.

Experimental results 18/23

Experimental results: no convergecast

• For every odd epochs, peers are supplied same model as data
generator (high R2 value)

• For every even epochs, peers are supplied a different model as data
generator (low R2 value)

Figure: Dataset, accuracy and messages for DReMo algorithm in monitoring
mode.

Experimental results 18/23

Experimental results: convergence and scalability

Figure: Convergence rate

Figure: Scalability of DReMo

Experimental results 19/23

Experimental results: convergence and scalability

Figure: Convergence rate

Figure: Scalability of DReMo

Experimental results 19/23

Experimental results: with convergecast

Figure: Accuracy and messages including convergecast

Experimental results 20/23

Application: smart grid CO2 monitoring

Figure: Accuracy and messages of DReMo for smart grid data monitoring

Experimental results 21/23

Conclusion

• First work on monitoring R2 for distributed data

• Algorithm is provably correct, highly efficient and converges to the
correct result very fast

• R2 is scale-free

• Potential applications in many domains

Conclusion 22/23

References

• K. Bhaduri, K. Das, C. Giannella. Distributed Monitoring of the R2

Statistic for Linear Regression. SDM. pp. 438-449. 2011.

• R. Wolff, K. Bhaduri, H. Kargupta. A Generic Local Algorithm for
Mining Data Streams in Large Distributed Systems. IEEE TKDE.
Volume 21, Issue 4, pp. 465-478. 2009.

• K. Bhaduri, H. Kargupta. A Scalable Local Algorithm for Distributed
Multivariate Regression. SAM J. Volume 1, Issue 3, pp 177-194.
2008.

Conclusion 23/23

Algorithms for Speeding up Distance-Based Outlier
Detection

Kanishka Bhaduri1, Bryan Matthews2, Chris Giannella3

1MCT Inc@NASA Ames, 2SGT Inc@NASA Ames, 3MITRE Corp

TU Dortmund Seminar

July 14, 2011

1/13

Roadmap

1 Introduction

2 Background

3 Contributions

4 Algorithms

5 Experimental results

6 Conclusion

Roadmap 2/13

Introduction

Given a dataset D:

t Speed . . . Alt

1 100 . . . 1000
2 100.3 . . . 1002
...

...
...

...

Distance-based outliers

Find all rows (instances) which are outliers

Introduction 3/13

What is an outlier?

• Many definitions exist

• We use distance-based outlier

Distance-based outliers

A point is an outlier if it is very far from its nearest neighbors

Figure: Distance-based outlier (red point)

Background 4/13

What is an outlier?

• Many definitions exist

• We use distance-based outlier

Distance-based outliers

A point is an outlier if it is very far from its nearest neighbors

Figure: Distance-based outlier (red point)

Background 4/13

Naive Approach

• For each point find the distance to its nearest neighbor (or k nearest
neighbors)

• Sort the points in descending order based on this distance to its
nearest neighbor

• These are the ranked outliers

Computational complexity

Quadratic with respect to the number of points

Background 5/13

Naive Approach

• For each point find the distance to its nearest neighbor (or k nearest
neighbors)

• Sort the points in descending order based on this distance to its
nearest neighbor

• These are the ranked outliers

Computational complexity

Quadratic with respect to the number of points

Background 5/13

First improvement: Orca

• Problem relaxation: find only the top t outliers

• Algorithm maintains a cutoff threshold which is set to the score of the
smallest outlier

• For each point, keep finding nearest neighbors until one is found less
than the threshold

• Prune that point since it cannot be an outlier

• Disk-based implementation can handle any size of data

• Published by Bay and Schwabacher in KDD’03

Computational complexity

On average, near-linear with respect to the number of points

Background 6/13

First improvement: Orca

• Problem relaxation: find only the top t outliers

• Algorithm maintains a cutoff threshold which is set to the score of the
smallest outlier

• For each point, keep finding nearest neighbors until one is found less
than the threshold

• Prune that point since it cannot be an outlier

• Disk-based implementation can handle any size of data

• Published by Bay and Schwabacher in KDD’03

Computational complexity

On average, near-linear with respect to the number of points

Background 6/13

Contributions

• Centralized iOrca improves upon the Orca using a novel indexing
scheme

• Early termination criteria allows algorithm to stop without accessing
all data points

• Distributed outlier detection algorithms much faster than existing
methods

Contributions 7/13

Speeding up Orca using Indexing (iOrca)

1 Update cutoff faster

2 Rearrange data in order to find
the nearest neighbors
approximately constant time

3 Avoid unnecessary disk access

4 Build index fast without loading
all data in memory

Figure: iOrca description

Can terminate even before looking at all the data!

Algorithms 8/13

Speeding up Orca using Indexing (iOrca)

1 Update cutoff faster

2 Rearrange data in order to find
the nearest neighbors
approximately constant time

3 Avoid unnecessary disk access

4 Build index fast without loading
all data in memory

Figure: iOrca description

Can terminate even before looking at all the data!

Algorithms 8/13

Speeding up Orca using Indexing (iOrca)

1 Update cutoff faster

2 Rearrange data in order to find
the nearest neighbors
approximately constant time

3 Avoid unnecessary disk access

4 Build index fast without loading
all data in memory

Figure: iOrca description

Can terminate even before looking at all the data!

Algorithms 8/13

Using distributed processing: iDOoR

• Nodes arranged in a ring

• Split data and assign to different nodes

• Central node ships blocks of test data for testing

• Test blocks proceed across the nodes in a ring

• Cutoff updated at end of each full round

Figure: iDOor description

Algorithms 9/13

Experimental results: datasets

• Covertype: contains 581,012 instances and 10 features

• Landsat: contains 275,465 instances and 60 features

• MODIS: contains 15,900,968 instances and 7 features

• CarrierX: contains 97,814,864 instances and 19 features

Algorithms 10/13

Experimental results: performance of iOrca

0.5 1 2 5 6
x 10

5

10
−1

10
1

10
2

10
3

10
4

10
5

Data size

R
un

tim
e

(s
ec

s)

Orca
iOrca
Index building

0 2 4 6 8 10
x 10

7

10
0

10
2

10
3

10
4

10
5

10
6

Data size

R
un

tim
e

(s
ec

s)

Index building
iOrca
Orca

0.5 5 15
x 10

6

10
−2

10
1

10
2

10
3

10
4

10
5

10
6

Data size

R
un

tim
e

(s
ec

s)

Orca
iOrca
Index building

Figure: Running time of iOrca

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5x 10
5

Blocks of data

C
ut

of
f

iOrca

Orca

0 2000 4000 6000 8000 10000 12000 14000 16000
0

0.02

0.04

0.06

0.08

Blocks of data

C
ut

of
f

Orca

iOrca

Figure: Cutoff increase of iOrca

Experimental results 11/13

Experimental results: running time of iDOoR

3 4 5 6 7
0

1

2

3

4

Number of nodes

S
pe

ed
up

CarrierX
Covtype
MODIS

Figure: Running time of iDOoR vs iOrca

Experimental results 12/13

Conclusion

• Both sequential and distributed outlier detection methods that are
significantly more efficient than existing methods

• Algorithms are provably correct

• iOrca and iDOor can terminate even before looking at all the test
points

• Potential applications in many domains

Acknowledgements: NASA SSAT project

Resources:

• http://ti.arc.nasa.gov/profile/kbhaduri/

• https://c3.ndc.nasa.gov/dashlink/

Conclusion 13/13

http://ti.arc.nasa.gov/profile/kbhaduri/
https://c3.ndc.nasa.gov/dashlink/

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	anm1:

