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Goodness-of-fit: coefficient of determination R? Nask.
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Goodness-of-fit: coefficient of determination R?

Zjl\il (i=5)?

R2 - 1 - n N 2
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e For perfect models, y; = §; = R2 =1

e For bad (average) models, y; = # = R?>=0

Introduction 4/23



What's new?

e The data is distributed across a large number of
sites/nodes/machines

e X=XU---UX,

e X is time varying

Figure: Geographically distributed data centers (Image source:
http://verycloud.com/default.aspx)
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Motivation

e Real-time fault detection/health assessment in enterprise-scale data
centers on the cloud

e Microsoft Cloud computing infrastructure, Amazon EC2
e Carbon footprint monitoring for Smart grid connected infrastructures

o Useful for distributed systems with very little centralized control
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Problem statement and solutions

e Given:

e data Xi,..., X, at each node

o threshold 0 < € < 1 (same at all nodes)

e 3 reliable, ordered, communication infrastructure
e precomputed Z at an earlier timestamp

e Maintain:
e regression model 7, such that R2 > ¢
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Problem statement and solutions

e Given:
e data Xi,..., X, at each node
o threshold 0 < € < 1 (same at all nodes)
e 3 reliable, ordered, communication infrastructure
e precomputed Z at an earlier timestamp
Maintain:
e regression model 7, such that R2 > ¢

Periodic algorithms: wastes resources

Incremental algorithms: most efficient, difficult to develop

Reactive event-based algorithms: simple, yet efficient
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Reformulating R? statistic

—
e Define a local vector v' at node P; based on y and ¥
e Define a parabola g : B ER? B — (L —€)p3
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Reformulating R? statistic

—
e Define a local vector v' at node P; based on y and ¥
e Define a parabola g : B ER? B — (L —€)p3

S STy - 5

RP=1- M) i\ 2
N (i Ty
s s (v - EaFA)

—

Still inefficient to compute v~ at each timestamp... J
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Geometric interpretation

Half-space

Figure: g and half-spaces

e V' inside parabola for all P; = v* is inside too
e Not true for outside parabola

e Use tangent lines to define half spaces outside parabola
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Geometric interpretation

Half-space

Figure: g and half-spaces

e V' inside parabola for all P; = v* is inside too
e Not true for outside parabola

e Use tangent lines to define half spaces outside parabola

How to check for this global condition more efficiently? )
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Local statistics vectors

Knowledge: IC = ’+ Z

— = =
o Agreement: A;; = 5;;+5;;

Withheld: H;; = K; — A7

Ki— Aij
o Message: ﬁ la ,ﬁ
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Local statistics vectors

1
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Withheld: ;. = K; — A7

— = =
e Message: S;j = K;—5;;

We show: g (E) >0=g (ﬁ) > 0....removing the sum inside paraboIaJ
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Global condition

For each peer and each of its neighbors, if
«KieR
« A ER
« Hii€R

—

where R is any convex region, then v® € R
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Global condition

For each peer and each of its neighbors, if
«KieR
« A ER
« Hii€R

?ER

where R is any convex region, then v

Global condition g (v?) € R can be detected based solely on local
conditions...
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Convex regions A

Tie region

Half-space

Figure: g and half-spaces

e Inside of parabola: g(?) > 0, convex by definition

e Qutside of parabola: define tangent lines to parabola g(?) =0,
convex by construction
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Local criterion

e Allows a node to terminate computation and communication
whenever stopping condition is satisfied irrespective of other
conditions

o Still guarantees eventual correctness

o Remarkably efficient in pruning messages

e Allows a node to sit idle until an event occurs:

e send or receive message
e change in local data X;
e change in node neighborhood
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DReMo flowchart

Monitoring algorithm:
@ Input: local dataset, error threshold ¢

@® Goal: monitor R? > ¢
@ Initialization
e Compute sufficient statistics vectors

e Define convex regions

\Llhing'_, Event detection

Figure: DReMo flowchart
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Re-computing models: convergecast

e Monitoring algorithm raises an alarm on correct detection

e For closed-loop solution, rebuild model in-network

e Correctness of monitoring algorithm minimizes false dismissals and
false alarms

XX = zn: X'X  XTy= z": Xy
i=1

i=1

== (Zl x,-Tx,-> B (Zl X,-Tyi) .f e © o

16/23

DReMo algorithm



Re-computing models: convergecast

e Monitoring algorithm raises an alarm on correct detection

e For closed-loop solution, rebuild model in-network

e Correctness of monitoring algorithm minimizes false dismissals and
false alarms

e

XX = zn: X'X  XTy= z": Xy
i=1

i=1

== (Zl x,-Tx,-> B (Zl X,-Tyi) .f e © o

Figure: Convergecast
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Experimental results: setup

o Each peer has a fixed length data buffer (a sliding window)

Epoch . Epoch

i Sub i Sub Sub i Sub
i Epoch: Epoch: i Epoch: Epoch:

0 20 40 500 520 540 1,000 X106 Time

Figure: Timing diagram
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Experimental results: no convergecast

e For every odd epochs, peers are supplied same model as data
generator (high R? value)

e For every even epochs, peers are supplied a different model as data
generator (low R? value)
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Experimental results: no convergecast

e For every odd epochs, peers are supplied same model as data
generator (high R? value)

e For every even epochs, peers are supplied a different model as data
generator (low R? value)
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Figure: Dataset, accuracy and messages for DReMo algorithm in monitoring
mode.
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Experimental results: con nce and scalability
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Experimental results: with con
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Application: smart grid CO, monitoring

Figure:

Experimental results
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Conclusion

First work on monitoring R? for distributed data

Algorithm is provably correct, highly efficient and converges to the
correct result very fast

R? is scale-free

Potential applications in many domains
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Introduction

Given a dataset D:

t | Speed | ... | Alt
1| 100 | ... | 1000

2| 100.3 | ... | 1002

Distance-based outliers

Find all rows (instances) which are outliers

Introduction 3/13



What is an outlier?

e Many definitions exist

e \We use distance-based outlier
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What is an outlier?

e Many definitions exist

e \We use distance-based outlier

Distance-based outliers

A point is an outlier if it is very far from its nearest neighbors

Figure: Distance-based outlier (red point)
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Naive Approach

e For each point find the distance to its nearest neighbor (or k nearest
neighbors)

e Sort the points in descending order based on this distance to its
nearest neighbor

e These are the ranked outliers

Background



Naive Approach

e For each point find the distance to its nearest neighbor (or k nearest
neighbors)

e Sort the points in descending order based on this distance to its
nearest neighbor

e These are the ranked outliers

Computational complexity
Quadratic with respect to the number of points
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First improvement: Orca

e Problem relaxation: find only the top t outliers

o Algorithm maintains a cutoff threshold which is set to the score of the
smallest outlier

e For each point, keep finding nearest neighbors until one is found less
than the threshold

e Prune that point since it cannot be an outlier
e Disk-based implementation can handle any size of data
e Published by Bay and Schwabacher in KDD'03
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First improvement: Orca

e Problem relaxation: find only the top t outliers

o Algorithm maintains a cutoff threshold which is set to the score of the
smallest outlier

e For each point, keep finding nearest neighbors until one is found less
than the threshold

e Prune that point since it cannot be an outlier
e Disk-based implementation can handle any size of data
e Published by Bay and Schwabacher in KDD'03

Computational complexity
On average, near-linear with respect to the number of points
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Contributions

e Centralized iOrca improves upon the Orca using a novel indexing
scheme

e Early termination criteria allows algorithm to stop without accessing
all data points

e Distributed outlier detection algorithms much faster than existing
methods

Contributions



Speeding up Orca using Indexing (iOrca)

@® Update cutoff faster

® Rearrange data in order to find
the nearest neighbors
approximately constant time

© Avoid unnecessary disk access

@ Build index fast without loading
all data in memory

Algorithms 8/13
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Speeding up Orca using Indexing (iOrca)

®
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@ Build index fast without loading

all data in memory
Figure: iOrca description

Can terminate even before looking at all the data!
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Using distributed processing: iDOoR

e Nodes arranged in a ring

Split data and assign to different nodes
Central node ships blocks of test data for testing

Test blocks proceed across the nodes in a ring

Cutoff updated at end of each full round
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Figure: iDOor description
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Experimental results: datasets

Covertype: contains 581,012 instances and 10 features
Landsat: contains 275,465 instances and 60 features
MODIS: contains 15,900,968 instances and 7 features
CarrierX: contains 97,814,864 instances and 19 features
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ntal results: perf

rmance of iOrca

. 5
2
B4
o
10 E 10°
S & =Orca S 107 oIndex building] 510 =Orca
« 4 |oi0rca x oiOrca x |eiOrca
107% ¢ Index building| 10 =0rca 107 ¢ Index building]
05 1 2 5 0 2 4 6 8 10 0.5 5 15
Data size x10° Data size x 10" Data size x 10°
Figure: Running time of iOrca
5210 o
iorca
2 0.06f iOrcz

£ 15 3

g £ 0.04 Orea

3 3

Orca
05 0.02)
< 100 20( 400 500 600 0 00

0 300
Blocks of data

2000 4000 6000 8000 10000 12000 14000 161
Blocks of data

Figure: Cutoff increase of iOrca

perimental results




5
Number of nodes

Figure: Running time of iDOoR vs iOrca
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Conclusion

e Both sequential and distributed outlier detection methods that are
significantly more efficient than existing methods

e Algorithms are provably correct

e [Orca and iDQOor can terminate even before looking at all the test
points

e Potential applications in many domains

Acknowledgements: NASA SSAT project

Resources:
e http://ti.arc.nasa.gov/profile/kbhaduri/
e https://c3.ndc.nasa.gov/dashlink/
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