

Distributed Monitoring of the R^2 Statistic for Linear Regression

Kanishka Bhaduri 1 , Kamalika Das 2 , Chris Giannella 3

¹MCT Inc@NASA Ames, ²SGT Inc@NASA Ames, ³MITRE Corp.

TU Dortmund Seminar

July 14, 2011

[Introduction](#page-2-0)

- [Problem statement and solutions](#page-9-0)
	- 3 [Distributed](#page-12-0) R^2 monitoring
- [DReMo algorithm](#page-18-0)
- [Experimental results](#page-27-0)

- $\bullet\,$ Learn $f\colon$ a function from \mathbb{R}^d to $\mathbb R$
- For linear models, $\hat{y} = f(\overrightarrow{x}) = a_0 + x_{1,1} * a_1 + x_{1,2} * a_2 + x_{1,3} * a_3 + \dots$

- $\bullet\,$ Learn $f\colon$ a function from \mathbb{R}^d to $\mathbb R$
- For linear models, $\hat{y} = f(\overrightarrow{x}) = a_0 + x_{1,1} * a_1 + x_{1,2} * a_2 + x_{1,3} * a_3 + \dots$

 $\overrightarrow{a} = (X^T X)^{-1} X^T y$

R^2 statistic

$$
R^{2} = 1 - \frac{\sum_{j=1}^{M} (y_{j} - \hat{y}_{j})^{2}}{\sum_{j=1}^{M} \left(y_{j} - \frac{\sum_{j=1}^{n} y_{j}}{M}\right)^{2}}
$$

R^2 statistic

$$
R^{2} = 1 - \frac{\sum_{j=1}^{M} (y_{j} - \hat{y}_{j})^{2}}{\sum_{j=1}^{M} \left(y_{j} - \frac{\sum_{j=1}^{n} y_{j}}{M} \right)^{2}}
$$

- For perfect models, $y_j = \hat{y}_j \Rightarrow R^2 = 1$
- $\bullet\,$ For bad (average) models, $\hat{y}_j=\frac{\sum_{j=1}^ny_j}{M}\Rightarrow R^2=0$

What's new?

- The data is distributed across a large number of sites/nodes/machines
	- $X = X_1 \cup \cdots \cup X_n$
- X is time varying

Figure: Geographically distributed data centers (Image source: <http://verycloud.com/default.aspx>)

- Real-time fault detection/health assessment in enterprise-scale data centers on the cloud
	- Microsoft Cloud computing infrastructure, Amazon EC2
- Carbon footprint monitoring for Smart grid connected infrastructures
- Useful for distributed systems with very little centralized control

• Given:

- data X_1, \ldots, X_n at each node
- threshold $0 < \epsilon < 1$ (same at all nodes)
- a reliable, ordered, communication infrastructure
- precomputed \overrightarrow{a} at an earlier timestamp
- Maintain:
	- regression model \overrightarrow{a} , such that $R^2 > \epsilon$

• Given:

- data X_1, \ldots, X_n at each node
- threshold $0 < \epsilon < 1$ (same at all nodes)
- a reliable, ordered, communication infrastructure
- precomputed \overrightarrow{a} at an earlier timestamp
- Maintain:
	- regression model \overrightarrow{a} , such that $R^2 > \epsilon$

Solutions

- Periodic algorithms
- Incremental algorithms
- Reactive event-based algorithms

• Given:

- data X_1, \ldots, X_n at each node
- threshold $0 < \epsilon < 1$ (same at all nodes)
- a reliable, ordered, communication infrastructure
- precomputed \overrightarrow{a} at an earlier timestamp
- Maintain:
	- regression model \overrightarrow{a} , such that $R^2 > \epsilon$

Solutions

- Periodic algorithms: wastes resources
- Incremental algorithms: most efficient, difficult to develop
- Reactive event-based algorithms: simple, yet efficient

- Define a local vector −→ v^i at node P_i based on y and \hat{y}
- Define a parabola $g: \overrightarrow{\beta} \in \mathbb{R}^2 \mapsto \beta_1 (1-\epsilon)\beta_2^2$

- Define a local vector −→ v^i at node P_i based on y and \hat{y}
- Define a parabola $g: \overrightarrow{\beta} \in \mathbb{R}^2 \mapsto \beta_1 (1-\epsilon)\beta_2^2$

$$
R^{2} = 1 - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} (y_{j}^{i} - \hat{y}_{j}^{i})^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} (y_{j}^{i} - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} y_{j}^{i}}{M})^{2}}
$$

- Define a local vector −→ v^i at node P_i based on y and \hat{y}
- Define a parabola $g: \overrightarrow{\beta} \in \mathbb{R}^2 \mapsto \beta_1 (1-\epsilon)\beta_2^2$

$$
R^{2} = 1 - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} (y_{j}^{i} - \hat{y}_{j}^{i})^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} (y_{j}^{i} - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} y_{j}^{i}}{M})^{2}}
$$

$$
R^2 > \epsilon \iff g\left(\sum_{i=1}^n \left(\frac{m(i)}{M}\right) \overrightarrow{v^i}\right) > 0
$$

$$
\iff g\left(\overrightarrow{v^G}\right) > 0
$$

- Define a local vector −→ v^i at node P_i based on y and \hat{y}
- Define a parabola $g: \overrightarrow{\beta} \in \mathbb{R}^2 \mapsto \beta_1 (1-\epsilon)\beta_2^2$

$$
R^{2} = 1 - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} (y_{j}^{i} - \hat{y}_{j}^{i})^{2}}{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} (y_{j}^{i} - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m(i)} y_{j}^{i}}{M})^{2}}
$$

$$
R^2 > \epsilon \iff g\left(\sum_{i=1}^n \left(\frac{m(i)}{M}\right) \overrightarrow{v^i}\right) > 0
$$

$$
\iff g\left(\overrightarrow{v^G}\right) > 0
$$

Still inefficient to compute −→ $v^{\tilde{G}}$ at each timestamp...

Geometric interpretation

Figure: g and half-spaces

- −→ $v^{\hat{i}}$ inside parabola for all $P_{\hat{i}} \Rightarrow$ −→ v^G is inside too
- Not true for outside parabola
- Use tangent lines to define half spaces outside parabola

Geometric interpretation

Figure: g and half-spaces

- −→ $v^{\hat{i}}$ inside parabola for all $P_{\hat{i}} \Rightarrow$ −→ v^G is inside too
- Not true for outside parabola
- Use tangent lines to define half spaces outside parabola

How to check for this global condition more efficiently?

Local statistics vectors

• Knowledge:
$$
\overrightarrow{\mathcal{K}}_i = \overrightarrow{v'} + \sum_{P_j \in N_i} \overrightarrow{S_{j,i}}
$$

• Agreement:
$$
\overrightarrow{A_{i,j}} = \overrightarrow{S_{i,j}} + \overrightarrow{S_{j,i}}
$$

• Withheld:
$$
\overrightarrow{\mathcal{H}_{i,j}} = \overrightarrow{\mathcal{K}_{i}} - \overrightarrow{\mathcal{A}_{i,j}}
$$

• Message:
$$
\overrightarrow{S_{i,j}} = \overrightarrow{\mathcal{K}_{i}} - \overrightarrow{S_{j,i}}
$$

Local statistics vectors

• Knowledge:
$$
\overrightarrow{\mathcal{K}}_i = \overrightarrow{v'} + \sum_{P_j \in N_i} \overrightarrow{S_{j,i}}
$$

• Agreement:
$$
\overrightarrow{A_{i,j}} = \overrightarrow{S_{i,j}} + \overrightarrow{S_{j,i}}
$$

• Withheld:
$$
\overrightarrow{\mathcal{H}_{i,j}} = \overrightarrow{\mathcal{K}_{i}} - \overrightarrow{\mathcal{A}_{i,j}}
$$

• Message:
$$
\overrightarrow{S_{i,j}} = \overrightarrow{\mathcal{K}_{i}} - \overrightarrow{S_{j,i}}
$$

We show:
$$
g\left(\overrightarrow{K_i}\right) > 0 \Rightarrow g\left(\overrightarrow{v^G}\right) > 0
$$
....removing the sum inside parabola

For each peer and each of its neighbors, if

\n- $$
\overrightarrow{K_i} \in R
$$
\n- $\overrightarrow{A_{i,j}} \in R$
\n- $\overrightarrow{H_{i,j}} \in R$
\n

where R is any convex region, then −→ $v^{\mathsf{G}} \in R$

For each peer and each of its neighbors, if

\n- $$
\overrightarrow{K_i} \in R
$$
\n- $\overrightarrow{A_{i,j}} \in R$
\n- $\overrightarrow{H_{i,j}} \in R$
\n

where R is any convex region, then −→ $v^{\mathsf{G}} \in R$

Global condition $g\left(\overrightarrow{v^{G}}\right)\in R$ can be detected based solely on local conditions...

Figure: g and half-spaces

- $\bullet\,$ Inside of parabola: $\,g(\overrightarrow{\beta})>0,$ convex by definition
- Outside of parabola: define tangent lines to parabola $g(\overrightarrow{\beta})=0$, convex by construction

- Allows a node to terminate computation and communication whenever stopping condition is satisfied irrespective of other conditions
- Still guarantees eventual correctness
- Remarkably efficient in pruning messages
- Allows a node to sit idle until an event occurs:
	- send or receive message
	- change in local data X_i
	- change in node neighborhood

DReMo flowchart

Monitoring algorithm:

- **1** Input: local dataset, error threshold ϵ
- $\,$ Goal: monitor $R^2 \gtrless \epsilon$
- **8** Initialization
	- \bullet $\overrightarrow{v_i}$
	- Compute sufficient statistics vectors
	- Define convex regions

Figure: DReMo flowchart

Re-computing models: convergecast

- Monitoring algorithm raises an alarm on correct detection
- For closed-loop solution, rebuild model in-network
- Correctness of monitoring algorithm minimizes false dismissals and false alarms

$$
X^T X = \sum_{i=1}^n X_i^T X_i \qquad X^T y = \sum_{i=1}^n X_i^T y_i
$$

$$
\overrightarrow{a} = \left(\sum_{i=1}^n X_i^T X_i\right)^{-1} \left(\sum_{i=1}^n X_i^T y_i\right)
$$

Re-computing models: convergecast

- Monitoring algorithm raises an alarm on correct detection
- For closed-loop solution, rebuild model in-network
- Correctness of monitoring algorithm minimizes false dismissals and false alarms

$$
X^T X = \sum_{i=1}^n X_i^T X_i \qquad X^T y = \sum_{i=1}^n X_i^T y_i
$$

$$
\overrightarrow{a} = \left(\sum_{i=1}^n X_i^T X_i\right)^{-1} \left(\sum_{i=1}^n X_i^T y_i\right)
$$

Figure: Convergecast

• Each peer has a fixed length data buffer (a sliding window)

Figure: Timing diagram

- For every odd epochs, peers are supplied same model as data generator (high R^2 value)
- For every even epochs, peers are supplied a different model as data generator (low R^2 value)

- For every odd epochs, peers are supplied same model as data generator (high R^2 value)
- For every even epochs, peers are supplied a different model as data generator (low R^2 value)

Figure: Dataset, accuracy and messages for *DReMo* algorithm in monitoring mode.

Figure: Convergence rate

Figure: Convergence rate

Figure: Scalability of DReMo

Experimental results: with convergecast

Figure: Accuracy and messages including convergecast

Application: smart grid $CO₂$ monitoring

Figure: Accuracy and messages of DReMo for smart grid data monitoring

- First work on monitoring R^2 for distributed data
- Algorithm is provably correct, highly efficient and converges to the correct result very fast
- R^2 is scale-free
- Potential applications in many domains

- K. Bhaduri, K. Das, C. Giannella. Distributed Monitoring of the R^2 Statistic for Linear Regression. SDM. pp. 438-449. 2011.
- R. Wolff, K. Bhaduri, H. Kargupta. A Generic Local Algorithm for Mining Data Streams in Large Distributed Systems. IEEE TKDE. Volume 21, Issue 4, pp. 465-478. 2009.
- K. Bhaduri, H. Kargupta. A Scalable Local Algorithm for Distributed Multivariate Regression. SAM J. Volume 1, Issue 3, pp 177-194. 2008.

Algorithms for Speeding up Distance-Based Outlier Detection

Kanishka Bhaduri¹, Bryan Matthews², Chris Giannella³

¹MCT Inc@NASA Ames, ²SGT Inc@NASA Ames, ³MITRE Corp

TU Dortmund Seminar

July 14, 2011

[Introduction](#page-38-0)

[Background](#page-39-0)

[Algorithms](#page-46-0)

[Experimental results](#page-51-0)

Given a dataset D:

Distance-based outliers

Find all rows (instances) which are outliers

What is an outlier?

- Many definitions exist
- We use distance-based outlier

What is an outlier?

- Many definitions exist
- We use distance-based outlier

Distance-based outliers

A point is an outlier if it is very far from its nearest neighbors

Figure: Distance-based outlier (red point)

- For each point find the distance to its nearest neighbor (or k nearest neighbors)
- Sort the points in descending order based on this distance to its nearest neighbor
- These are the ranked outliers

- For each point find the distance to its nearest neighbor (or k nearest neighbors)
- Sort the points in descending order based on this distance to its nearest neighbor
- These are the ranked outliers

Computational complexity

Quadratic with respect to the number of points

- Problem relaxation: find only the top t outliers
- Algorithm maintains a cutoff threshold which is set to the score of the smallest outlier
- For each point, keep finding nearest neighbors until one is found less than the threshold
- Prune that point since it cannot be an outlier
- Disk-based implementation can handle any size of data
- Published by Bay and Schwabacher in KDD'03

- Problem relaxation: find only the top t outliers
- Algorithm maintains a cutoff threshold which is set to the score of the smallest outlier
- For each point, keep finding nearest neighbors until one is found less than the threshold
- Prune that point since it cannot be an outlier
- Disk-based implementation can handle any size of data
- Published by Bay and Schwabacher in KDD'03

Computational complexity

On average, near-linear with respect to the number of points

- Centralized iOrca improves upon the Orca using a novel indexing scheme
- Early termination criteria allows algorithm to stop without accessing all data points
- Distributed outlier detection algorithms much faster than existing methods

- **1** Update cutoff faster
- **■** Rearrange data in order to find the nearest neighbors approximately constant time
- **3** Avoid unnecessary disk access
- **4** Build index fast without loading all data in memory

- **1** Update cutoff faster
- **■** Rearrange data in order to find the nearest neighbors approximately constant time
- **3** Avoid unnecessary disk access
- **4** Build index fast without loading all data in memory

Figure: iOrca description

- **1** Update cutoff faster
- **■** Rearrange data in order to find the nearest neighbors approximately constant time
- **3** Avoid unnecessary disk access
- **4** Build index fast without loading all data in memory

Figure: iOrca description

Can terminate even before looking at all the data!

Using distributed processing: iDOoR

- Nodes arranged in a ring
- Split data and assign to different nodes
- Central node ships blocks of test data for testing
- Test blocks proceed across the nodes in a ring
- Cutoff updated at end of each full round

Figure: iDOor description

- Covertype: contains 581,012 instances and 10 features
- Landsat: contains 275,465 instances and 60 features
- MODIS: contains 15,900,968 instances and 7 features
- *CarrierX:* contains 97,814,864 instances and 19 features

Experimental results: performance of iOrca

Figure: Running time of iOrca

Figure: Cutoff increase of iOrca

Experimental results: running time of iDOoR

Figure: Running time of iDOoR vs iOrca

- Both sequential and distributed outlier detection methods that are significantly more efficient than existing methods
- Algorithms are provably correct
- *iOrca* and *iDOor* can terminate even before looking at all the test points
- Potential applications in many domains

Acknowledgements: NASA SSAT project

Resources:

- <http://ti.arc.nasa.gov/profile/kbhaduri/>
- <https://c3.ndc.nasa.gov/dashlink/>