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The Power Crisis

M.Pedram [CADS10]

mobile clients

Data center, HPC,server
0%

20%

40%

60%

80%

100%

Macbook Macbook Air iPhone-3G MacPro-Desktop

C
o

2
 E

m
is

s
io

n
s
 %

Transport

Production

Use

Run-time power 

~50% of ICT 

environmental impact 

and cost!



3

The Thermal Crisis

• Never-ending shrinking: smaller, faster…

Free lunch?!

[Sun,            
1.8 GHz 

Sparc v9 

Microproc]

[Sun,    
Niagara 

Broadband

Processor]

CMOS

65nm

CMOS

45nm CMOS

32nm

[Coskun et al „07, UCSD]

• Multi-Processor SoC possible
“Cool” chips, “hot” applications

Not really…

[Cell              
Multi-Processor]

system               

wear-out 

and             

lifetime 

reliability 

degradation !!

• Thermal issues: hot-spots, thermal gradients…



3D-SoCs are even worse



A System-level View

• Heat density trend 2005-2010 (systems)

[Uptime Institute]

Cooling and hot spot avoidance is an open issue!



• Increasing power density

• Thermal issues at 
multiple levels
– Chip / component level

– Server/board level

– Rack level

– Room level

Multi-scale Problem

Today’s focus: Chip level 



Thermal Management

Spatial and temporal

workload variation

software

High

power

densities

Tecnology scaling

High performace

requirements
Limitated

dissipation

capabilities

System integration

Costs

power, temperature, performance

NON UNIFORM:

Hot spots, thermal

gradients and cycles

Leakage

current Reliability lost, 

Aging

Dynamic Approach:

on-line tuning of system performance and

temperature through closed-loop control



Control algo

migration policy

System 

information

from OSWorkload

CPU utilization,

queue status

Power
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alarms Temperature
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…

Multicore Platform

Management Loop: Holistic view
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Private
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O.S

DRM - General Architecture

• System (Chip Scale)

• Sensors

– Performance counter 
- PMU

– Core temperature

• Actuator - Knobs

– ACPI states

– P-State  DVFS

– C-State  PGATING

– Task allocation

• Controller

– Reactive

– Threshold/Heuristic

– Controller theory

– Proactive 

– Predictors

Simulation snap-shot
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CONTROLLER

• Controller 

• Minimize energy 

• Bound the CPU 
temperature

• Our approach

• Stack of controllers

• Energy controller 

• Thermal controller

CONTROLLER

Energy

Thermal

TifECi

WLei

fTCi



Energy Controller
CPU BOUND TASK

MEMORY BOUND TASK
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• Power reduction

• Energy Efficiency Loss!
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• Power reduction

• Energy Efficiency Gain!



Energy Controller
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• Performance Loss

• Power reduction

• Energy Efficiency Loss!
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• Same Performance

• Power reduction

• Energy Efficiency Gain!
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OUR SOLUTION 
•Power Saving

• No performance Loss

• Higher Energy Efficiency
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Thermal Controller

[Intel®, ISSCC 2007]

Threshold based

controller

•T > Tmax low freq

•T < Tmin  high freq

• cannot prevent overshoot

• thermal cycle

Classical feed-back 

controller

• PID controllers

• Better than threshold

based approach

• Cannot prevent overshoot

Model Predictive 

Controller

•Internal prediction:

avoid overshoot

•Optimization:

maximizes performance

• Centralized

• aware of neighbor 

cores thermal 

influence

• All at once – MIMO 

controller

• Complexity !!!
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Model

Past input 

& output

Optimizer
Future 

input

Target 

frequency

+
-

Cost 

function

MPC

Future

output

Future 

error

Constraint



CoreN

Core1

Corei

multicore

MPC Robustness

Thermal 

Model

Past input 

& output

Optimizer
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+
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Cost 

function
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Future

output
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error

Constraint

MPC needs a Thermal Model 

• Accurate, with low complexity 

• Must be known “at priori”

• Depends on user configuration

• Changes with system ageing

“In field” Self-Calibration
Workload

tCoreN

Workload

t
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Workload

t

Workload

t

Workload
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Workload

t

Workload 

execution
Training

tasks

Workload 

Power

Temperature

System 

Identification

Identified State-Space

Thermal Model

• Force test workloads

• Measure cores temperatures

• System identification
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P=g(task,f)

Thermal Model & Power Model
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Model

least square

optimization

Data
Optimal 

parameters

Test pattern

System

response

A,B

e = Tmodel - Treal

Parametric optimization

Parameters

Cost function

Error Function

i

LS System Identification



PREPROCESSING

Pattern Generator Workloader

core0 core1 coreN

XTS

LS

MODEL

LS

MODEL

PREPROCESSING
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DATA.csv

..0,0,1,1,1,…
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•Temperature

• Frequency

• Workload

C/FORTRAN

(SLICOT,MINPACK)

Matlab System Identification

• N4SID

• PEM

• LS (Levenberg-Marquardt)

HW

(Ts=1/10ms)

Fan board

CPU2 CPU1

Storage drives

SUN FIRE X4270

A
ir

 f
lo

w

RAMRAM

Chipset

CPU1CPU2

• Intel Nehalem

• 8core/16thread

• 2.9GHz

• 95W TDP

• IPMI

Experimental setup

../AppData/Local/Temp/Rar$DI01.184/presentazione_sid/presentazione_sid/prbs.fig
../AppData/Local/Temp/Rar$DI01.184/presentazione_sid/presentazione_sid/prbs.fig
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Identification based on pure LS fitting

TEMPERATURA MISURATA vs. SIMULATA
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Black-box Identification
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PROBLEM 1: 

“WORKLOAD” signal 

does not include power 

variation due to 

frequency changes.

FREQUENCY

WORKLOAD

SOLUTION:

Learn Power Model too!

Partially unobservable model



Power model P=g(w,f)  initially unknown

Power

model

(LUT) 

Thermal 

model

(A,B)
T

f
w

P

1° STEP: set f=const, set w as  [0|1]N sequence [P1|P0]N

with P1, P0 pre-measured in steady state, we measure T to 

obtain A0 by LS

2° STEP: A is known, we set f, w, we measure T, we 

invert A and we obtain P

Multi-step Identification

3° STEP: P is known, we now generate richer 

sequence w,f and we re-calibrate A by LS  

Iterate until convergence
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Problem 2: Instable Model

Tamb

Tcore

t

Tcore differs from Tamb with P=0

Problem 3: Model is not physical

Identification algorithm must be 
aware of physical properties to avoid 
over-fitting

Validation



Constraint on initial

condition

Linear constraint

CONSTRAINED LEAST SQUARES
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Constrained Identification
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Possible causes:

• Package thermal inertia?

• Environment inertia (Air)?

• PLEAK temperature dependency?

Identification with pseudorandom  trace:

• Too many samples, huge LS computation 

Large time constant

Quasi-steady-state accuracy



• Modelling the third time constant as heat sink temperature variation 

• One-pole model identification

Enviroment

thermal

model

CPU thermal 

model 

Theatsink

PT

Tenv

Addressing models stiffnes
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MPC Scalability

[Intel, ISSCC 2007] [Intel, ISSCC 2007]

MPC Complexity

• Implicit - a.k.a. on-line

• computational 

burden

• Explicit – a.k.a. off-line

• high memory 

occupation
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[Intel, ISSCC 2007] [Intel, ISSCC 2007]
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Complexity grows

superlinearly with 

number of cores!!



Addressing Scalability

On a short time window, 

power has a local thermal 

effect!

4

36
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One controller for each core

Controller uses:

• local power & thermal model

• neighbor‟s temperatures

Fully distributed

Complexity scales 

linearly with #cores



CoreN

Core1

Corei

multicore

Distributed Control

Distributed and hierarchical controllers:
– Energy Controller (EC)

• Output Frequency fEC

– Minimize power – CPI based

– Performance degradation < 5%

– Temperature Controller (TC) 

• Distributed MPC

• Inputs:

– fEC ,TCORE, TNEIGHBOURS

• Output

– Core frequency (fTC)

fTC i,k+1

fTC N,k+1

T i,k

T i,k

controller

node

Ti+1,k

Ti-1,k

TN-1,k

Tx,k

T2,k

TCi

TCN

fEC i,k+1

ECi

CPI i,k+1

CPI N,k+1

ECN

fEC N,k+1



Thermal Controller
Core 1

CPI

f1,EC

f1,TC

Thermal Controller
Core 2

CPI

f1,EC

f2,TC

Thermal Controller
Core 3

CPI

f1,EC

Thermal Controller
Core 4

CPI

f1,EC

PLANT

T1+Tneigh
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f4,TC
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High Level Architecture 



CPI

f1,EC

Observer

P1,EC

Distributed Thermal Controller

g(·) MPC Controller

Linear Model

QP Optimizx1

TENV

g-1(·)

CPI

P1,TC

f1,TC

MPC Controller Core 1

Nonlinear

(Frequency to Power)

Linear

(Power to Temperature)

s.t

2 states

per core
T1

Classic Luenberger state observer

Implicit formulation



?

Region number

x1SHIFTEDx1
+

A1
-1·B1

[x1 ; TENV ; P1,EC]

REGION 
NUMBER

GAIN 
MATRICES

1 F1 , G1

2 F2 , G2

… …

nr Fnr , Gnr

u(k)=∆P1
+

P1,EC

P1,TC

Our aim is to minimize the difference between the input P1,TC (also called

manipulated variable MV) and the reference (P1,EC). Our controller can only take in

account a constant reference. To overcome this limitation we reformulate the

tracking problem as a regulation problem consisting in taking the ∆P1 (the new

MV) to 0. The regulated power P1,TC is:

At each time instant the system belongs to a region

according with its current state. On each region the

explicit controller executes the following linear control

law:

The prediction evaluated by our explicit controller cannot take into account the

measured disturbances (uMD=[Tenv, P1, Tneigh]). Thus we exploit the superposition

principle of linear systems:

To remap the effect of these elements we exploit the model to modify the state

(x(k)  xSHIFTED(k)) projecting one step forward the MDs effects.

Explicit Distributed Controller



CoreN
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multicore

O.S.Implementation – Linux SMP

• Controller routines

– Scheduler Routine Extension

• Is distributed

• Executes on the core it relies on

– Timing: Scheduler tick (1-10ms)

• CPI estimation

– Performance counters:

• Clock expired

• Instructions retired

• Energy Controller

– Look-up-table:

• fEC = LuT [ CPI ] 

• Thermal Controller

– Core Temperature Sensors

– Matrix Multiplication & Look-up-table:

• fTC = LuT [ M*[TCORE, TNEIGHBOURS] ] 

fTC i,k+1

fTC N,k+1

T i,k

T i,k

controller

node

Ti+1,k

Ti-1,k

TN-1,k

Tx,k

T2,k

TCi

TCN

fEC i,k+1

ECi

CPI i,k+1

CPI N,k+1

ECN

fEC N,k+1



System 

Identification

“In field” Self-Calibration

• Force test workloads

• Measure cores temperatures

• System identification

Model Learning Scalability

Thermal 

Model

Past input 

& output

Optimizer
Future 

input

Target 

frequency

+
-

Cost 

function

MPC

Future

output

Future 

error

Constraint

MPC Weaknesses – 2nd

Internal Thermal Model

• Accurate, with low complexity

• Must be known “at priori”

• Depends on user configuration

• Changes with system ageing

Workload

tCoreN

Workload

t

Workload

tCorei

Workload

t

Workload

t

Workload

tCore1

Workload

t

Workload 

execution
Training

tasks

Workload 

CoreN

Core1

Corei

multicore

Temperature

Power

Identified State-Space

Thermal Model

Complexity issue

• State-of-the-art is centralized

• Least square based – is based on matrix 

inversion (cubic with #cores)

# CORES

T
im

e
-

s

4

105

16

>1h

8

1230

1 2 4

Distributed approach: 

each core identifies its 

local thermal model

Complexity scales 

linearly with #cores
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Simulation Strategy
Trace driven Simulator [1]:
• Not suitable for full system simulation (How to simulate O.S.?)

• looses  information on cross-dependencies

 resulting in degraded simulation accuracy
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y

Multicore

Simulator

Workload Set

Power Model

Temperature Model

Execution Trace 

database

Multicore

Simulator

Workload

Power Model

Temperature Model
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s
tr

a
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g
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Close loop simulator:
• Cycle accurate simulators [2] :

• High modeling accuracy

• support well-established power and temperature 

co-simulation based on analytical models and 

system micro-architectural knowledge

• Low simulation speed

• Not suitable for full-system simulation 

• Functional and instruction set simulators:
• allow full system simulation

• less internal precision

• less detailed data

• introduces the challenge of having accurate 

power and temperature physical models

 no micro-architectural model

[1] P Chaparro et al. Understanding the thermal implications of multi-core architectures.  2007

[2] Benini L. et al. MPARM: Exploring the multi-processor SoC design space with SystemC 2005



Virtual Platform

Virtual Platform

Simulator

SIMICS

RUBY CORE
Stall Mem

Access
CPU1 CPU2 CPUN

L2
L1

L2

DRAM

Network

L1 L1

HW
SW

App.1

T
1 ... T
N

App.N

T
1 ... T
N

O.S.

....

Simics by Virtutech:
• full system functional simulator

• models the entire system: 

peripherals, BIOS, network interfaces, cores, 

memories

• allows booting full OS, such as LinuxSMP 

• supports different target CPU (arm, sparc, x86)

• x86 model: 

• in-order

• all instruction are retired in 1 cycle

• does not account for memory latency

Memory timing model
• RUBY – GEMS (University of Wisconsin)[1] 

• Public cycle-accurate memory timing 

model

• Different target memory architectures

• fully integrated with Virtutech Simics

• written in C++

• we use it as skeleton to apply our add-

ons (as C++ object)

[1] Martin Milo M. K. et al. Multifacet’s general

execution-driven multiprocessor simulator (GEMS) toolset 2005



Virtual Platform

Virtual Platform

Simulator

SIMICS

PC
#hlt,stall

active,cycles

RUBY CORE
Stall Mem

Access

DVFS

fi

fi

fi ,VDD

CPU1 CPU2 CPUN

L2
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DRAM

Network

L1 L1

HW
SW

App.1

T
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N

App.N

T
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N

O.S.

....

#L1MISS, #BUSACCESS,
CYCLEACTIVE,....

f,v f,v f,v

Performance knobs (DVFS) module:
• Virtutech Simics support frequency change at run-time

• RUBY does not support it:

• does not have internal knowledge of frequency

• We add a new DVFS module to support it :

• ensures L2 cache and DRAM to have a constant clock frequency

• L1 latency scale with Simics processor clock frequency

Performance counters module:
• Needed by performance control policy 

• We add a new Performance Counter module to support it

• exports to O.S. and application different  quantities: 

• the number of instruction retired, clock cycles and stall cycles expired,

halt instructions,…



Virtual Platform

Virtual Platform

Simulator

SIMICS

PC
#hlt,stall

active,cycles

RUBY CORE
Stall Mem

Access

DVFS

fi

fi

fi ,VDD

POWER MODEL

PCORE, PL1, PL2
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App.N
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f,v f,v f,v

Power model module:
• At run-time estimate the power consumption of the target architecture

• Core model PT = [PD(f,CPI) + PS(T, VDD)] *(1 − idleness) + idleness *(PIDLE)

• PD experimentally calibrated analytical power model

• Cache and memory power – access cost estimated with CACTI [1] 

[1] Thoziyoor Shyamkumar et al. A comprehensive memory modeling tool and its application to the 

design and analysis of future memory hierarchies.  2008



Power Model

 Power model interface

Simulation snap-shot
Ruby &
simics
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Modeling Real Platform – Power 

Ek

CKDCBCKDDAD CPIfkkkfVkP  )(2

Real Power Measurement 

• Intel server system S7000FC4UR

• 16 cores - 4 quad cores Intel® Xeon® X7350, 2.93GHz

• 16GB FBDIMMs

• Intel® Core™ 2 Duo architecture

• At the wall Power consumption

• test: 

• set of synthetic benchmarks with different memory pattern accesses 

• forcing all the cores to run at different performance levels

• for each benchmark we extract the clocks per instruction metrics (CPI) and 

correlate it with the power consumption

• We relate the static power with the operating point by using an analytical model

High accuracy at 

high and low CPI



Virtual Plattform

Virtual Platform

Simulator

SIMICS

PC
#hlt,stall 

active,cycles

RUBY CORE
Stall Mem

Access

DVFS

fi
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POWER MODEL
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CPU1 CPU2 CPUN

L2
L1
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DRAM

Network

L1 L1
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App.1

T
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App.N

T
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#L1MISS, #BUSACCESS,
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TEMPERATURE MODEL
T

TCPU,

f,v f,v f,v

Temperature model module:
• we integrate our virtual platform with a thermal simulator [1]

• Input: power dissipated by the main functional units composing the target platform

• Output: Provides the temperature distribution along the simulated multicore die area 

as output

[1] Paci G. et al. Exploring ”temperature-aware” design in low-power MPSoCs
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Modeling Real Platform– Thermal

• Thermal Model Calibration :
• Derived from Intel® Core™ 2 Duo layout

• We calibrate the model parameter to simulate real HW transient

• High accuracy (error < 1%) and same transient behavior

<1%



Virtual Platform Performance

• Host:
• Intel® Core™ 2 Duo

• 2.4 Ghz

• 2GB RAM

Simics + 

Ruby:

Simics + 

Ruby + 

DVFS:

Simics + 

Ruby + 

DVFS + 

Power:

Simics + 

Ruby +

DVFS + 

Power + 

Thermal 

interface: 

Simics + 

Ruby +

DVFS +

Power +

Thermal 

Model:

• Target:
• 4 core Pentium® 4 

• 2GB RAM

• 32 KB private L1 cache

• 4 MB shared L2 cache

• Linux OS

Tsim = 

1040 s

Tsim = 

1045 s

Tsim = 

1110 s

Tsim = 

1160 s

Tsim = 

1240 s

68 cells

T = 100ns

Compute 

every 13us

1 Billion instruction

+ 7% + 19.2%



Mathworks Matlab/Simulink

• Numerical computing environment developed to design, 

implement and test numerical algorithms

• Mathworks Simulink – for simulation of dynamic systems: 

simplifies and speedups the development cycle of control systems

• Can be called as a computational engine by writing C and Fortran 

programs that use Mathworks Matlab‟s engine library

• Controller design - two steps: 

• developing the control algorithm that optimizes the system 

performance 

• implementing it in the system

We allow a Mathworks Matlab/Simulink description of the controller to 

directly drive at run-time the performance knobs of the emulated system
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Mathworks Matlab interface:
• New module named Controller in RUBY

• Initialization: starts the Mathworks Matlab engine concurrent process,

• Every N cycle - wake-up:

• send the current performance monitor output to the Mathworks Simulink model

• execute one step of the controller Mathworks Simulink model

• propagate the Mathworks Simulink controller decision to the DVFS module

DVFS

fi

fi

CONTROL-STRATEGIES DEVELOPMENT CYCLE
1. Controller design  in Mathworks Matlab/Simulink framework

• system represented by a simplified model 

• obtained by physical considerations and identification techniques

2. Set of simulation tests and design

adjustments done in Simulink

3. Tuned controller evaluation

with an accurate model of the plant 

done in the virtual platform

4. Performance analysis, by simulating the overall system



Outline

• Introduction

• Energy Controller

• Thermal Controller architecture

• Learning (self-calibration)

• Scalability

• Simulation Infrastructure

• Results

• Conclusion



Results

Energy Controller (EC)

– Performance  Loss < 5%

– Energy minimization

Temperature Controller (TC) 

– Complexity reduction

• 2 explicit region for controller

– Performs as the centralized

• Thermal capping

<0.3° <3%

<3%



Next Steps

• Now working on the embedded implementation 

• Server multicore platform and Intel ® SCC

• Explore thermal aware scheduler solution 

• co-operate with presented solution

• Develop distributed+multi-scale solution for data-centers



Thermal-aware task scheduling
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