

Model predictive control and selflearning of thermal models for multi-core platforms*

Luca Benini Luca.benini@unibo.it

*Work supported by Intel Labs Braunschweig

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONAL

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

The Thermal Crisis

• Never-ending shrinking: smaller, faster...

• Thermalessouses postsispots, thermal gradients...

3D-SoCs are even worse

A System-level View

• Heat density trend 2005-2010 (systems)

Cooling and hot spot avoidance is an open issue!

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Multi-scale Problem

- Increasing power density
- Thermal issues at multiple levels
 - Chip / component level
 - Server/board level
 - Rack level
 - Room level

Today's focus: Chip level

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Thermal Management

Vecnology scaling High performace requirements

> High power densities

software

Spatial and tempora workload variation

Limitated

Dynamic Approach:

on-line tuning of system performance and temperature through closed-loop control

Leakage current

Hot spots, thermal gradients and cycles

Reliability lost, Aging

Management Loop: Holistic view

Outline

- Introduction
- Energy Controller
- Thermal Controller architecture
- Learning (self-calibration)
- Scalability
- Simulation Infrastructure
- Results
- Conclusion

DRM - General Architecture

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Energy Controller

Energy Controller

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Outline

- Introduction
- Energy Controller
- Thermal Controller architecture
- Learning (self-calibration)
- Scalability
- Simulation Infrastructure
- Results
- Conclusion

Thermal Controller

MPC Robustness

Outline

- Introduction
- Energy Controller
- Thermal Controller architecture
- Learning (self-calibration)
- Scalability
- Simulation Infrastructure
- Results
- Conclusion

Thermal Model & Power Model

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Model Structure

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

LS System Identification

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Experimental setup

Workload & Temperature

Pseudorandom workload pattern

Black-box Identification

Identification based on pure LS fitting

MEASURED vs. SIMULATED TEMPERATURE

DIORUM

Partially unobservable model

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Multi-step Identification

Power model P=g(w,f) initially unknown

1° STEP: set *f*=const, set *w* as $[0|1]^{N}$ sequence $\rightarrow [P1|P0]^{N}$ with P1, P0 pre-measured in steady state, we measure T to obtain A_0 by LS

2° STEP: A is known, we set f, w, we measure T, we invert A and we obtain P

3° STEP: P is known, we now generate richer sequence w,f and we re-calibrate A by LS

Iterate until convergence

Validation

Problem 3: Model is not physical

Identification algorithm must be aware of physical properties to avoid over-fitting

ALMA MATER STUDIORUM

– UNIVERSITA DI BOLOGNA

Constrained Identification

S DIORUM

Quasi-steady-state accuracy

Possible causes:

- Package thermal inertia?
- Environment inertia (Air)?
- P_{LEAK} temperature dependency?

Identification with pseudorandom trace:

• Too many samples, huge LS computation

Addressing models stiffnes

- Modelling the third time constant as heat sink temperature variation
- One-pole model identification

Outline

- Introduction
- Energy Controller
- Thermal Controller architecture
- Learning (self-calibration)
- Scalability
- Simulation Infrastructure
- Results
- Conclusion

MPC Scalability

Addressing Scalability

Distributed Control

Distributed Controller

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Distributed Thermal Controller

Explicit Distributed Controller

O.S.Implementation – Linux SMP

- Controller routines
 - Scheduler Routine Extension
 - Is distributed
 - · Executes on the core it relies on
 - Timing: Scheduler tick (1-10ms)
- CPI estimation
 - Performance counters:
 - Clock expired
 - Instructions retired
- Energy Controller
 - Look-up-table:
 - f_{EC} = LuT [CPI]
- Thermal Controller
 - Core Temperature Sensors
 - Matrix Multiplication & Look-up-table:
 - f_{TC} = LuT [M*[T_{CORE}, T_{NEIGHBOURS}]]

DIORUM DIORUM

Model Learning Scalability

Outline

- Introduction
- Energy Controller
- Thermal Controller architecture
- Learning (self-calibration)
- Scalability
- Simulation Infrastructure
- Results
- Conclusion

Simulation Strategy

Trace driven Simulator [1]:

- Not suitable for full system simulation (How to simulate O.S.?)
- looses information on cross-dependencies
 - \rightarrow resulting in degraded simulation accuracy
- Close loop simulator:
- Cycle accurate simulators [2] :
 - High modeling accuracy
 - support well-established power and temperature co-simulation based on analytical models and system micro-architectural knowledge
 - Low simulation speed
 - Not suitable for full-system simulation
- Functional and instruction set simulators:
 - allow full system simulation
 - less internal precision
 - less detailed data \rightarrow no micro-architectural model
 - introduces the challenge of having accurate power and temperature physical models

[1] P Chaparro et al. Understanding the thermal implications of multi-core architectures. 2007 [2] Benini L. et al. MPARM: Exploring the multi-processor SoC design space with SystemC 2005

Virtual Platform

Simics by Virtutech:

- full system functional simulator
- models the entire system: peripherals, BIOS, network interfaces, cores, memories
- allows booting full OS, such as Linux SMP
- supports different target CPU (arm, sparc, x86)
- x86 model:
 - in-order
 - all instruction are retired in 1 cycle
 - does not account for memory latency

[1] Martin Milo M. K. et al. Multifacet's general execution-driven multiprocessor simulator (GEMS) toolset 2005

Memory timing model

- RUBY GEMS (University of Wisconsin)[1]
 - Public cycle-accurate memory timing model
 - Different target memory architectures
 - fully integrated with Virtutech Simics
 - written in C++
 - we use it as skeleton to apply our addons (as C++ object)

Performance koobte(19 VIFS) unterdule:

- Nereated to Speice range post of the posticy ange at run-time
- WREBUICE work of the support it would be a support it
 - edpress to ato has a internapipking a video difference of puer notivities:
- · We add the evul Db/ FiSomostulections upport it clock cycles and stall cycles expired,
 - ensumed the started as d. DRAM to have a constant clock frequency
 - L1 latency scale with Simics processor clock frequency

Virtual Platform

Power model module:

- At run-time estimate the power consumption of the target architecture
- Core model $P_T = [P_D(f, CPI) + P_S(T, VDD)] * (1 idleness) + idleness * (P_{IDLE})$
- P_D experimentally calibrated analytical power model
- Cache and memory power access cost estimated with CACTI [1]

[1] Thoziyoor Shyamkumar et al. A comprehensive memory modeling tool and its application to the design and analysis of future memory hierarchies. 2008

Power Model

Modeling Real Platform – Power

 $P_D = k_A \cdot V_{DD}^2 \cdot f_{CK} + k_B + (k_C + k_D \cdot f_{CK}) \cdot CPI^{k_E}$

• We relate the static power with the operating point by using an analytical model

Virtual Platform

Temperature model module:

- we integrate our virtual platform with a thermal simulator [1]
- Input: power dissipated by the main functional units composing the target platform
- Output: Provides the temperature distribution along the simulated multicore die area as output

[1] Paci G. et al. Exploring "temperature-aware" design in low-power MPSoCs

Thermal Model

Modeling Real Platform– Thermal

- Thermal Model Calibration :
 - Derived from Intel® Core™ 2 Duo layout
 - · We calibrate the model parameter to simulate real HW transient
 - High accuracy (error < 1%) and same transient behavior

Virtual Platform Performance

- Target:
 - 4 core Pentium® 4
 - 2GB RAM
 - 32 KB private L1 cache
 - 4 MB shared L2 cache
 - Linux OS

- Host: ۲
 - Intel® Core[™] 2 Duo
 - 2.4 Ghz
 - 2GB RAM

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Mathworks Matlab/Simulink

- Numerical computing environment developed to design, implement and test numerical algorithms
- Mathworks Simulink for simulation of dynamic systems: simplifies and speedups the development cycle of control systems
- Can be called as a computational engine by writing C and Fortran programs that use Mathworks Matlab's engine library
- Controller design two steps:
 - developing the control algorithm that optimizes the system performance
 - implementing it in the system

We allow a Mathworks Matlab/Simulink description of the controller to directly drive at run-time the performance knobs of the emulated system

Virtual Platform

Mathworks Matlab interface:

- New module named Controller in RUBY
- Initialization: starts the Mathworks Matlab engine concurrent process,
- Every N cycle wake-up:

CONTROL-STRATEGIES DEVELOPMENT CYCLE

- 1. Controller design in Mathworks Matlab/Simulink framework
 - system represented by a simplified model
 - obtained by physical considerations and identification techniques
- 2. Set of simulation tests and design adjustments done in Simulink
- Tuned controller evaluation with an accurate model of the plant done in the virtual platform
- T T T T $T, Tmax, P^*$ $T, Tmax, P^*$
- 4. Performance analysis, by simulating the overall system

Virtutech Simics

Outline

- Introduction
- Energy Controller
- Thermal Controller architecture
- Learning (self-calibration)
- Scalability
- Simulation Infrastructure
- Results
- Conclusion

Results

- Now working on the embedded implementation
 - Server multicore platform and Intel ® SCC
- Explore thermal aware scheduler solution
 - co-operate with presented solution
- Develop distributed+multi-scale solution for data-centers

Thermal-aware task scheduling

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA