O

Energy Efficiency in
Graphics Rendering

Preeti Ranjan Panda
Department of Computer Science and Engineering
Indian Institute of Technology Delhi

Presentation at TU Dortmund, June 201 |



Graphics Power Consumption

Desktop computer Mobile computer

Cooling

Monitor 56%

Graphics

Graphics Lo

6%
[ Ref : PC Energy-Efficiency Trends and Technology, source: intel.com]



[
. Fea [ ]

\LUOCI Vdl

[ "2 Y

100N

* GPU/Graphics rendering power is
significant (greater than CPU)

* Yet, very little research on GPU energy
efficiency!
> GPU performance was/is primary

I p WL Y ol 1 1 N R I
o rroprietary aruJ arcnitectures



From

Command
processor

Receives
vertices and

commands
from CPU

o
o
o

N

Vertex
processor

Transform
vertices to
screen
space and

Light

-

s}
w»

N\

Clipping

Delete
unseen
part of
scene

i,
8®,
0

)

Setup and
Rasterize

Generate
pixels

AN

Texture

Fragment
Processor

Pixel
Coloring
and
Z-test

Blend with
Frame

Buffer




IT Delhi — Intel
Collaboration

Texture

Command Vertex . Setup and | | Fragment Display
Clipping : w
processor k processor Rasterize | ' Processor
N N N N N
Receives Transform | Delete Generate | Pixel Blend with
vertices and | yertices to | unseen pixels Coloring | Frame
commands | screen part of and Buffer
from CPU | space and | scene Z-test
Light

D s> Lov=i:DVFs [

B.V.N. Silpa and P.R. Panda, 201 |



o LOW POWER
TEXTURE MAPPING
[ICCAD’08]



o N\ A FO 1IN D
OVWCI T
100%
>
o 80%:
(]
c
© 60%
©
(O]
= 40%
£
= 20%
pra

0%-

City Fire Teapot Tunnel

Benchmark

O Transform and lighting B Setup and rasterize O Texture Memory
O Fragment processing B Frame buffer write

Texture memory consumes 30-40% of total power.




TA rZ TR A X — -
ICALUI | IJIJ

ng

* Add detail and surface texture to an object.

e Reduces the modeling effort for the programmer.

Object Texture Texture Mapped
Object



Texture Filtering

[0 Texture space and object space could be at arbitrary
angles to each other

0 Nearest neighbor

O Bilinear interpolation : g
weighted average of four
texels nearest to the pixel

center.




Texture Access Pattern

e Texture mapping exhibits high spatial and temporal

locality (txty) (et ty)
- o . E = Pixel
= Bilinear filtering requires 4 .° E. center

neighbouring texels

(tx,ty+1) (tx+1ty+l)

= Neighbouring pixels map to
spatially local texels

m Repetitive textures




Blocking and Texture Cache

Blocked Representation
o Texels stored as 4x4 blocks

> Reduces dependency on texture orientation, and exploits
spatial locality

Texture memory accessed through a Cache
hierarchy (“TEXTURE CACHE”)

Familiar architectural space

BUT, application knowledge could help improve the
HW over a “standard cache”



* Access to first texel gives (bx,by)  (bxl,by)
information about access to the (tx,ty)  (tx+l,ty)
next 3 texels @ = Pixel

e The four texels could be mapped m b center
to either one, two or four (tx,ty+l) (tx+lty+l)
neighbouring blocks. (bx,byl) — (bxl.byl)

B.V.N. Silpa and P.R. Panda, 201 |



I oo A X DA\A'AMTA\IA-IIm
LOVYV 1T OVYVCI ICALUI

* Lower power memory architecture than
Cache for texturing

> Use a few registers to filter accesses to
blocks expected to be reused

> Access stream has predictability - controlled
access mechanism reduces tag lookups



I TOVVY llidlly DIOCKS LO UUIICI

* Need to buffer up to 4 blocks

e Buffer

\

e ,
ad
Texture Buffer Array

[0 A buffer is a set of 4x4 registers, each 32 bit

[0 Texture Buffer Array is a group of 4 such buffers



o Case I:

> Lookup (block0)
Get the 4 texels from the block using offsets
SAVING: 3 LOOKUPS

e Cases 2 & 3:

> Lookup (block 0)
Get texel0 and texel |l from this block .
> Lookup (block 2) .

Get texel2 and texel3 from this block
o SAVING: 2 LOOKUPS




O o ondm A
W OIILU..

* Case 4
> Lookup all 4 blocks and get the texels

from the respective blocks using offsets

Power Savings from:
Reduced Tag lookups
Smaller buffer than cache

B.V.N. Silpa and P.R. Panda, 201 |



Distribution of accesses among the four cases

60%
50%
40%
30%
20%
10%

0%

case 1l case 2 case 3 case 4

Number of comparisons per access is 1.38 instead of 4

B.V.N. Silpa and P.R. Panda, 201 |



From LI Cache

Cur Level

»
»

Enable Hit Bank Sel

Block Addr

Offset

To Filter

Y3dOODNA

B.V. N. Silpa and M



Hit Rate

100%
80% —
60% -
40%
20% || B

Q
X

Fire Teapot Tunnel Gloss Gearbox Sphere

O 16KB 2-way assoc B 512B direct mapped
0 512B fully asscoc OTFM

TFM gives 4.5% better hit rate than a direct mapped filter of the same size



Energy per Access

0.1
0.08
f
£ 0.06
>
2
o 0.04
c
L
= IR L :
0 1 I I I
Fire Teapot  Tunnel Gloss  Gearbox Sphere
O 16KB 2-way assoc L1 B 512B direct mapped L1
0O 512B direct mapped filter 0O 512B Full assoc filter
B TFM

TFM consumes 75% lesser energy than the conventional Texture cache



TA\I 1 1 LA EI /N LN N A S 1NN 4 1 1 I I S I
iexture riitet HICIHNON Yy oullilial y

<

* In addition to high spatial locality, texture
mapping access pattern also has
predictability

* Replaced high energy cache lookups with
low energy register buffer reads

* TFM consumes ~75% lesser energy than
conventional texture mapping system

* Overheads:
> TFM access 4x faster than cache access

> 0.48% area overhead over texture cache
subsystem




o DYNAMICVOLTAGE AND
FREQUENCY SCALING
(DVFS)

[CODES+ISSS’10]



Binl Bin2 Bin3 Bin4
D £ 2
Vertex Primitive . Setup & Pixel Raster
- > >
Shader Assembly | Clipping Rasterize Shading Operations
Geometry Pipeline J U Pixel Pipeline )

Geometry
Processing

-Ha

Pixel

Processing




\A/Arl/ A A ~~
vVVOIrKIOad g me

Different games have significant but gradual
workload variation within a game

2.E+06

0
9
8
7 |LE+06 \
-k v L/
(7] E+
9 i ;; 8.E+05 \J \
z O 6.E+05 L
3 4.E+05 W
2 2.E+05 —L"‘"“”’
' B 0.E+00
0 —eN AR IRI~NRYSS
\5& ((Q,‘?g- \oéd ,\\:‘\ g\?}b Frame Number




Continuity of motion leads to frame level spatial
correlation, resulting in slow workload variation



n of Tile Workload

s [Fife] to join the match!

* Many tiles are correlated, even if workloads of
consecutive frames differ
» 80% tiles within 10% diff



Predicted Workload —
run Tiles-1,2 atV/2

#| over-predicted #| under-predicted
/ V I
VI/2
& V2 -
T/2 2T — .
/ 3T/2 2T

=> slow down #2

=> speed up #2

Continuously track and take corrective action after rendering each tile

B.V.N. Silpa and P.R. Panda, 201 |



Frame Rank (R;, R, R, R)
ARG Ny Mo Iy
e Vertex processing workload of a primitive of V
vertices using a Shader Nv instructions long

> Shader workload ~V * Nv
o Clipping and Binning ~V
= ZVertexCount xVertexShaderLength + PrimitiveCount

Batches

* Pixel shading workload

> Number of pixels per primitive ~ Area of bounding
box of the primitive

R,= > > PrimitiveAreax PixelShaderLength

p
Batches Primitives



Frame Rank ( R;,R,R,R )
\ NG Np Mo TNy
» Texture mapping workload

o Texture footprint — number of texels to be
filtered per pixel

R.= >, > PrimitiveAreaxTextureCount x TextureFootPrint

Batches Primitives

» Raster operations workload

° Each raster operation results in a read and
write to frame buffer

R, = Y Y 2xPrimitiveA rea xRasterOps

Batches Primitives



Tile Rank (T_,TT)
< \!'p!'D'y)

e Tile rank computation is similar to frame
rank computation

» Pixel count is computed as overlap area of
the bounding box and the tile.

. Approx No. of Pixels
/




Danl, Dacad NM\/EC CAhAamAa
NdllN DdoCU LJVI O OCIICIITIC

» Divide the tiles into set of Heavy tiles ( Tile rank in
current frame greater than its rank in previous frame)
and Light tiles.

Frame_Rank (current) > Frame_Rank (previous) ?

Yes No
Process Heavy tiles at Process Heavy tiles at frequency
Frequency F=F,, determined by frame history

\/

Use tile history based scheme
for light tiles




Tila Danl, Dacad M\/EC Ci imvrarnnna iy
11IC N\adllk DdSCTU VI o Julllitial y

4

* Tile Rank Based DVFS gives 75% better
performance than history based scheme

e Energy/FrameRate minimum for Tile Rank
based DVFS scheme

e Overheads
° < 0.01% computation
> < 0.01% storage



El pd=p 5 g \AIA mll
I ULUIC VYV VOI

* Extension to multi-core GPUs
* Other stages of the graphics pipeline



Thank You!



