
E  Effi i  i  E  Effi i  i  Energy Efficiency in Energy Efficiency in 
Graphics RenderingGraphics RenderingGraphics RenderingGraphics Rendering

Preeti Ranjan Panda
Department of Computer Science and Engineering
Indian Institute of Technology DelhiIndian Institute of Technology Delhi

Presentation at TU Dortmund, June 2011J



Graphics Power ConsumptionGraphics Power Consumptionp pp p
Desktop computer Mobile computer

CPU

Cooling 
Fan
4% R  

VR

Power 
Supply 
Loss

CPU
7% Chipset

13%
Power 
Supply 

4% Rest 
13%

Other
7%

VR
1%

Loss
22%

HDD/
DVD

Loss
7%

HDD/
DVD
4%

7%
14.1' 
LCD
33%

9%Monitor 56%

CPU
4%

4%

Graphics 

Graphics 
14%

B. V. N. Silpa and P. R. Panda, 2011

[ Ref : PC Energy-EfficiencyTrends and Technology, source: intel.com]
6%



ObservationObservationObservationObservation

GPU/Graphics rendering power is GPU/Graphics rendering power is 
significant (greater than CPU)
Yet, very little research on GPU energy 
efficiency!y
◦ GPU performance was/is primary
◦ Proprietary GPU architectures ◦ Proprietary GPU architectures 
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Graphics PipelineGraphics PipelineGraphics PipelineGraphics Pipeline
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LOW POWER LOW POWER 
TEXTURE MAPPING TEXTURE MAPPING TEXTURE MAPPING TEXTURE MAPPING 
[ICCAD’08][ICCAD’08][ ][ ]
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Power Profile of the PipelinePower Profile of the PipelinePower Profile of the PipelinePower Profile of the Pipeline
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Texture memory consumes 30-40% of total power.
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Texture Mapping Texture Mapping Texture Mapping Texture Mapping 

Add detail and surface texture to an object. 
Reduces the modeling effort for the programmer.g p g

Object Texture Texture Mapped j pp
Object
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Texture FilteringTexture Filtering

Texture space and object space could be at arbitrary 
angles to each otherg

Nearest neighbor Nearest neighbor 
Bilinear interpolation : 
weighted average of four 
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Texture Access PatternTexture Access Pattern

Texture mapping exhibits high spatial and temporal 
locality

Bilinear filtering requires 4 
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Blocking and Texture Cache Blocking and Texture Cache 

Blocked Representation
T l d  4 4 bl k◦ Texels stored as 4x4 blocks

◦ Reduces dependency on texture orientation, and exploits 
spatial localityp y

Texture memory accessed through a Cache 
hierarchy (“TEXTURE CACHE”)y ( )
Familiar architectural space
BUT, application knowledge could help improve the U , app cat o  ow e ge cou  e p p ove t e 
HW over a “standard cache”
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Predictability in Texture AccessesPredictability in Texture AccessesPredictability in Texture AccessesPredictability in Texture Accesses

Access to first texel gives 
information about access to the 
next 3 texels Pixel 

(tx,ty) (tx+1,ty)
(bx,by) (bx1,by)

next 3 texels
The four texels could be mapped 
to either one, two or four 

i hb i  bl k
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Low Power Texture Memory ArchitectureLow Power Texture Memory ArchitectureLow Power Texture Memory ArchitectureLow Power Texture Memory Architecture

Lower power memory architecture than Lower power memory architecture than 
Cache for texturing

U   f  i t  t  filt   t  ◦ Use a few registers to filter accesses to 
blocks expected to be reused
Access stream has redictabilit  c ntr lled ◦ Access stream has predictability - controlled 
access mechanism reduces tag lookups
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How many blocks to buffer?How many blocks to buffer?How many blocks to buffer?How many blocks to buffer?

Need to buffer up to 4 blocks 

Buffer

A buffer is a set of  4x4 registers, each 32 bit

Texture Buffer ArrayTexture Buffer Array

Texture Buffer Array is a group of 4 such buffers
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Texture LookupTexture LookupTexture LookupTexture Lookup

Case 1:
◦ Lookup (block0)◦ Lookup (block0)

Get the 4 texels from the block using offsets
SAVING: 3 LOOKUPS

Cases 2 & 3:
◦ Lookup (block 0)p ( )

Get texel0 and texel1 from this block 

◦ Lookup (block 2)
Get texel2 and texel3 from this block

◦ SAVING: 2 LOOKUPS
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ContdContdContd..Contd..

Case 4:
◦ Lookup all 4 blocks and get the texels◦ Lookup all 4 blocks and get the texels

from the respective blocks using offsets

Power Savings from:
Reduced Tag lookupsReduced Tag lookups
Smaller buffer than cache
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Distribution of access among various casesDistribution of access among various casesDistribution of access among various casesDistribution of access among various cases

Distribution of accesses among the four cases
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Architecture of Architecture of TTexture exture FFilter ilter MMemoryemoryArchitecture of Architecture of TTexture exture FFilter ilter MMemoryemory
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Hit Rate into TFMHit Rate into TFMHit Rate into TFMHit Rate into TFM
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Energy per AccessEnergy per AccessEnergy per AccessEnergy per Access
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Texture Filter Memory SummaryTexture Filter Memory SummaryTexture Filter Memory SummaryTexture Filter Memory Summary
In addition to high spatial locality texture In addition to high spatial locality, texture 
mapping access pattern also has 
predictabilityp y
Replaced high energy cache lookups with 
low energy register buffer readsgy g
TFM consumes ~75% lesser energy than 
conventional texture mapping systempp g y
Overheads:
◦ TFM access 4x faster than cache accessTFM access 4x faster than cache access
◦ 0.48% area overhead over texture cache 

subsystemy
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DYNAMIC VOLTAGE AND DYNAMIC VOLTAGE AND 
FREQUENCY SCALING FREQUENCY SCALING FREQUENCY SCALING FREQUENCY SCALING 
(DVFS)(DVFS)( )( )
[CODES+ISSS’10][CODES+ISSS’10]
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Tiled Graphics RenderingTiled Graphics RenderingTiled Graphics RenderingTiled Graphics Rendering
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Workload of gamesWorkload of gamesWorkload of gamesWorkload of games

Diff   h  i ifi  b  d l Different games have significant but gradual 
workload variation within a game
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Spatial Correlation in frames Spatial Correlation in frames Spatial Correlation in frames Spatial Correlation in frames 

Continuity of motion leads to frame level spatial 
correlation, resulting in slow workload variation

B. V. N. Silpa and P. R. Panda, 2011



Temporal Correlation of Tile Workload  Temporal Correlation of Tile Workload  Temporal Correlation of Tile Workload  Temporal Correlation of Tile Workload  

M  l   l d   f kl d  f Many tiles are correlated, even if workloads of 
consecutive frames differ  

80% tiles within 10% diff
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Dynamic Voltage and Frequency ScalingDynamic Voltage and Frequency Scaling

V/2
Predicted Workload 

Dynamic Voltage and Frequency ScalingDynamic Voltage and Frequency Scaling
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Continuously track and take corrective action after rendering each tile
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Frame Rank (RFrame Rank (R   RR   RR   RR ))Frame Rank (RFrame Rank (RGG, , RRpp, , RRtt, , RRrr))
Vertex processing workload of a primitive of  V Vertex processing workload of a primitive of  V 
vertices using a Shader Nv instructions long 

Sh d kl d  V * N◦ Shader workload ~ V * Nv
◦ Clipping and Binning ~ V 

∑ ountPrimitiveCerLengthVertexShadtVertexCounR
Batches

g +×= ∑

Pixel shading workload 
◦ Number of pixels per primitive ~ Area of bounding 

 f   box of the primitive 

∑ ∑ ×=
Batches Primitives

p rLengthPixelShadereaPrimitiveAR
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Frame Rank ( RFrame Rank ( R   RR   RR   RR ))Frame Rank ( RFrame Rank ( RGG, , RRpp, , RRtt, , RRrr))

Texture mapping workload Texture mapping workload 
◦ Texture footprint – number of texels to be 

filtered per pixel

∑ ∑ ××=t tPrintTextureFoontTextureCoureaPrimitiveAR

Raster operations workload

∑ ∑
Batches Primitives

t

Raster operations workload
◦ Each raster operation results in a read and 

  f  ffwrite to frame buffer
RasterOpsreaPrimitiveARr ∑ ∑ ××= 2
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Tile Rank (Tile Rank (TT TT TT))Tile Rank (Tile Rank (TTpp,T,TTT,T,Trr))

Tile rank computation is similar to frame 
rank computationp
Pixel count is computed as overlap area of 
the bounding box and the tilethe bounding box and the tile.

Approx No. of Pixels
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Rank Based DVFS SchemeRank Based DVFS SchemeRank Based DVFS SchemeRank Based DVFS Scheme

Divide the tiles into set of Heavy tiles ( Tile rank in 
current frame greater than its rank in previous frame) 
and Light tilesand Light tiles.

Frame_Rank (current) > Frame_Rank (previous) ? 

Process Heavy tiles at Process Heavy tiles at frequency

Yes No

Process Heavy tiles at 
Frequency F=FMax

Process Heavy tiles at frequency
determined by frame history

Use tile history based scheme 
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Tile Rank Based DVFS SummaryTile Rank Based DVFS SummaryTile Rank Based DVFS SummaryTile Rank Based DVFS Summary

Tile Rank Based DVFS gives 75% better Tile Rank Based DVFS gives 75% better 
performance than history based scheme
Energy/FrameRate minimum for Tile Rank 
based DVFS scheme 
Overheads

 0 01% i◦ < 0.01% computation
◦ < 0.01% storage
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Future WorkFuture WorkFuture WorkFuture Work

Extension to multi core GPUsExtension to multi-core GPUs
Other stages of the graphics pipeline 
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