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Graphics Power Consumption
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* GPU/Graphics rendering power is
significant (greater than CPU)

* Yet, very little research on GPU energy
efficiency!
> GPU performance was/is primary
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o LOW POWER
TEXTURE MAPPING
[ICCAD’08]
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O Transform and lighting B Setup and rasterize O Texture Memory
O Fragment processing B Frame buffer write

Texture memory consumes 30-40% of total power.
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* Add detail and surface texture to an object.

e Reduces the modeling effort for the programmer.

Object Texture Texture Mapped
Object



Texture Filtering

[0 Texture space and object space could be at arbitrary
angles to each other

0 Nearest neighbor

O Bilinear interpolation : g
weighted average of four
texels nearest to the pixel

center.




Texture Access Pattern

e Texture mapping exhibits high spatial and temporal

locality (txty) (et ty)
- o . E = Pixel
= Bilinear filtering requires 4 .° E. center

neighbouring texels

(tx,ty+1) (tx+1ty+l)

= Neighbouring pixels map to
spatially local texels

m Repetitive textures




Blocking and Texture Cache

Blocked Representation
o Texels stored as 4x4 blocks

> Reduces dependency on texture orientation, and exploits
spatial locality

Texture memory accessed through a Cache
hierarchy (“TEXTURE CACHE”)

Familiar architectural space

BUT, application knowledge could help improve the
HW over a “standard cache”



* Access to first texel gives (bx,by)  (bxl,by)
information about access to the (tx,ty)  (tx+l,ty)
next 3 texels @ = Pixel

e The four texels could be mapped m b center
to either one, two or four (tx,ty+l) (tx+lty+l)
neighbouring blocks. (bx,byl) — (bxl.byl)
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* Lower power memory architecture than
Cache for texturing

> Use a few registers to filter accesses to
blocks expected to be reused

> Access stream has predictability - controlled
access mechanism reduces tag lookups
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* Need to buffer up to 4 blocks

e Buffer

\

e ,
ad
Texture Buffer Array

[0 A buffer is a set of 4x4 registers, each 32 bit

[0 Texture Buffer Array is a group of 4 such buffers



o Case I:

> Lookup (block0)
Get the 4 texels from the block using offsets
SAVING: 3 LOOKUPS

e Cases 2 & 3:

> Lookup (block 0)
Get texel0 and texel |l from this block .
> Lookup (block 2) .

Get texel2 and texel3 from this block
o SAVING: 2 LOOKUPS
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* Case 4
> Lookup all 4 blocks and get the texels

from the respective blocks using offsets

Power Savings from:
Reduced Tag lookups
Smaller buffer than cache
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Distribution of accesses among the four cases
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case 1l case 2 case 3 case 4

Number of comparisons per access is 1.38 instead of 4
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Hit Rate
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O 16KB 2-way assoc B 512B direct mapped
0 512B fully asscoc OTFM

TFM gives 4.5% better hit rate than a direct mapped filter of the same size



Energy per Access
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TFM consumes 75% lesser energy than the conventional Texture cache
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* In addition to high spatial locality, texture
mapping access pattern also has
predictability

* Replaced high energy cache lookups with
low energy register buffer reads

* TFM consumes ~75% lesser energy than
conventional texture mapping system

* Overheads:
> TFM access 4x faster than cache access

> 0.48% area overhead over texture cache
subsystem




o DYNAMICVOLTAGE AND
FREQUENCY SCALING
(DVFS)

[CODES+ISSS’10]
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Different games have significant but gradual
workload variation within a game
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Continuity of motion leads to frame level spatial
correlation, resulting in slow workload variation



n of Tile Workload

s [Fife] to join the match!

* Many tiles are correlated, even if workloads of
consecutive frames differ
» 80% tiles within 10% diff



Predicted Workload —
run Tiles-1,2 atV/2

#| over-predicted #| under-predicted
/ V I
VI/2
& V2 -
T/2 2T — .
/ 3T/2 2T

=> slow down #2

=> speed up #2

Continuously track and take corrective action after rendering each tile
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Frame Rank (R;, R, R, R)
ARG Ny Mo Iy
e Vertex processing workload of a primitive of V
vertices using a Shader Nv instructions long

> Shader workload ~V * Nv
o Clipping and Binning ~V
= ZVertexCount xVertexShaderLength + PrimitiveCount

Batches

* Pixel shading workload

> Number of pixels per primitive ~ Area of bounding
box of the primitive

R,= > > PrimitiveAreax PixelShaderLength

p
Batches Primitives



Frame Rank ( R;,R,R,R )
\ NG Np Mo TNy
» Texture mapping workload

o Texture footprint — number of texels to be
filtered per pixel

R.= >, > PrimitiveAreaxTextureCount x TextureFootPrint

Batches Primitives

» Raster operations workload

° Each raster operation results in a read and
write to frame buffer

R, = Y Y 2xPrimitiveA rea xRasterOps

Batches Primitives



Tile Rank (T_,TT)
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e Tile rank computation is similar to frame
rank computation

» Pixel count is computed as overlap area of
the bounding box and the tile.

. Approx No. of Pixels
/
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» Divide the tiles into set of Heavy tiles ( Tile rank in
current frame greater than its rank in previous frame)
and Light tiles.

Frame_Rank (current) > Frame_Rank (previous) ?

Yes No
Process Heavy tiles at Process Heavy tiles at frequency
Frequency F=F,, determined by frame history

\/

Use tile history based scheme
for light tiles
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* Tile Rank Based DVFS gives 75% better
performance than history based scheme

e Energy/FrameRate minimum for Tile Rank
based DVFS scheme

e Overheads
° < 0.01% computation
> < 0.01% storage
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* Extension to multi-core GPUs
* Other stages of the graphics pipeline



Thank You!



