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MOA-SAMOA

© 0 0/ [ sam0A scalable Advance: x

€« C' | [ samoa-project.net

SAMOA Scalable Advanced Massive Online Analysis

WELCOME TO SAMOA!

Upcoming BIG DATA Mining Project! The goal of SAMOA
using a cluster/cloud environment. In particular, we are inter
and S4 (http/incubator.apache.org/sé/) as the un

provide a framework
ed in using Stom (http:
omputational framework.

T mining data streams
m-project net

1lying
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New Zealand
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Outline

o MOA: Massive Online Analysis

e Adaptive Size Sliding Window Learning
@ Classification
@ Active Learning
@ Multi-label Classification
@ Frequent Pattern Mining

e Summary and Future Work: SAMOA
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Outline

0 MOA: Massive Online Analysis
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Data Streams

Big Data & Real Time




Big Data

Big data—a growing torrent

60 O to buy a disk drive that can
store‘all' of the world’s music

113 mobile phones
5 b|”|0n inruse in 2010

McKinsey Global Institute (MGI) Report on Big Data, 2011.

Big data refers to datasets whose size is beyond
the ability of typical database software tools to
capture, store, manage, and analyze.
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BIG Data

e Volume
e Variety
e Velocity

3 Vs
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BIG Data

e Volume
e Variety
e Velocity

6 Vs

e Variability
e Value
e Veracity
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Methodology

i@ _aaa

Distributed systems
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Methodology

Paolo Boldi
Facebook Four degrees of separation

Big Data does not need big machines,
it needs big intelligence
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Introduction: Data Streams

Data Streams
@ Sequence is potentially infinite
@ High amount of data: sublinear space
@ High speed of arrival: sublinear time per example

@ Once an element from a data stream has been processed
it is discarded or archived

Example
Puzzle: Finding Missing Numbers
@ Let 7 be a permutation of {1,...,n}.
@ Let ©_1 be & with one element
missing.
@ 7_4[i] arrives in increasing order
Task: Determine the missing number
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Data Streams
@ Sequence is potentially infinite
@ High amount of data: sublinear space
@ High speed of arrival: sublinear time per example

@ Once an element from a data stream has been processed
it is discarded or archived

Example
Puzzle: Finding Missing Numbers Use a n-bit
@ Let 7 be a permutation of {1,...,n}. vector to

memorize all the
numbers (O(n)
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Data Streams
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Introduction: Data Streams

Data Streams
@ Sequence is potentially infinite
@ High amount of data: sublinear space
@ High speed of arrival: sublinear time per example

@ Once an element from a data stream has been processed
it is discarded or archived

Example Data Streams:
Puzzle: Finding Missing Numbers O(log(n)) space.
@ Let 7 be a permutation of {1,...,n}. Store
@ Let m_1 be n with one element
missin1g. n(n2+1) —Zmdj].
@ 7_4[i] arrives in increasing order =
Task: Determine the missing number
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Data Streams

Data Streams
@ Sequence is potentially infinite
@ High amount of data: sublinear space
@ High speed of arrival: sublinear time per example

@ Once an element from a data stream has been processed
it is discarded or archived

Tools:
@ approximation
@ randomization, sampling
@ sketching
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Data Streams

Data Streams
@ Sequence is potentially infinite
@ High amount of data: sublinear space
@ High speed of arrival: sublinear time per example

@ Once an element from a data stream has been processed
it is discarded or archived

Approximation algorithms
@ Small error rate with high probability

@ An algorithm (&, ) —approximates F if it outputs F for
which Pr[|F — F| > eF] < 4.
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Data Streams Approximation Algorithms

1011000111 1010101
Sliding Window

We can maintain simple statistics over sliding windows, using
O(1log® N) space, where

@ N is the length of the sliding window

@ ¢ is the accuracy parameter

[§ M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. 2002
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Data Streams Approximation Algorithms

101100011110101 0111010
Sliding Window

We can maintain simple statistics over sliding windows, using
O(1log® N) space, where

@ N is the length of the sliding window

@ ¢ is the accuracy parameter

[§ M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. 2002
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What is MOA?

{M}assive {O}nline {A}nalysis is a framework for online
learning from data streams.

@ ltis closely related to WEKA

@ It includes a collection of offline and online as well as tools
for evaluation:

@ classification
e clustering

@ Easy to extend
@ Easy to design and run experiments

17 /83



History - timeline
WEKA
@ 1993 - WEKA : project starts (lan Witten)
@ 1996 - First public release of WEKA in C
@ Early 1997 - decision was made to rewrite WEKA in Java
@ Mid 1999 - WEKA 3 (100% Java) released

MOA

@ Nov 2007 - First public release of MOA: Richard Kirkby
Thesis

@ 2009 - MOA Concept Drift
@ 2010 - MOA Clustering

@ 2011 - MOA Graph Mining, Multi-label classification, Twitter
Reader, Active Learning

@ 2013 - MOA Outlier
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WEKA

@ Waikato Environment for Knowledge Analysis
@ Collection of state-of-the-art machine learning algorithms
and data processing tools implemented in Java
o Released under the GPL
@ Support for the whole process of experimental data mining

e Preparation of input data
e Statistical evaluation of learning schemes
e Visualization of input data and the result of learning

@ Used for education, research and applications & !
@ Complements “Data Mining” by Witten & Frank & Hall
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WEKA: Impact Downloads

o Weka---Machine Learning Software in Java .. eibe, fracpete, weka

Summary Files Reviews Support Wiki Mediawiki Code News
\

Date Range: [zomnos 1o 2013-0228 }

A Home (Change File)

DOWNLOADS

3,770,004

Inthe selected date range

TOP COUNTRY *
United States

16% of downloaders

""" TOPOS*
Wind
2002:01 200401 200601 2008.01 201001 2012:01 .

20/83)—



WEKA: the bird
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MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the
Weka, but also extinct.
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MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the
Weka, but also extinct.

i |
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MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the
Weka, but also extinct.
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Classification Experimental Setting

8060 MOA Graphical User Interface

Regression | Clustering  Outliers

Configure | EvaluatePrequential Run
status 3 % :omnle(e
nt 2569 |
EvaluatePrequential -| tree... mnmng lmlss [valua(lng Ieame l-—d 2353 |

[ Pause | [ Resume | [ Cancel | | Delete |

Preview (55.155) | Refresh | Auto refresh: | every second o

learning evaluation instances,evaluation time (cpu seconds),model cost (RAM-Hours),classified instances,classifications
100000.0,0.356024,-9. ,100000.0, 7 42.96224348508957,100000.0, 1.0

200000.0,0.55388, ~1.4328915211889478E-13, 200000. 0, 73.7, 45.07422289423342,200000. 9, ~1. 0

300000.0, 0. 735898, ~2.0331237465143203E-13, 300000. 0, 74. 5, 46 . 44387317909163, 300000.0,-1.0
400000.0, 0. 984121, 2. 505928065147665E-13, 400000. 0, 73. 0, 43.513d6 26247411, 400000.0, ~1.0

500000.0, 1.188363,~3. 0743035798271497E-13, 500000. 0, 76. 5,49 . 8617464327166, 500000. 0, ~1. 0

600000.0, 1,388451,-3. 5919326667984327E-13, 600000..0, 74. 7, 46. 9526054028666, 600000.0,-1.0

700000.0, 1.586233,-4. 1035961152778733E-13, 700000.0, 76. 6,50 8428 14648000946, 700000.0,-1.0

800000.0, 1.790258, 4. 631410249405437E-13, 800000. 0, 72.7, 42.98579030466055,800000.. 0, 1.0
900000.0, 2. 815832, -5. 214971800645193E-13, 990008 . 0, 72. 8999999999999, 43.59337274165348, 906000. 0, -1.0

[ Export as .txt file...

Value Plot
Umane  @oed e | ZoominY | | ZoomoutY | | ZoominX | | ZoomoutX |
Accuracy  74.40 - 73.58 -
) Kappa 652 - 432 -y e A e\ e AP o PN R oo AL b b
) Ram-Hours 0.00 - 000 -
) Time 55.05 - 27.85 -
) Memory 000 - o000 - || O
0.00 +
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Classification Experimental Setting

Evaluation procedures for Data

Streams
@ Holdout e;r:::l‘;
@ Interleaved Test-Then-Train or P
Prequential L
@ input () learning

requirement 1

\

requirements 2 & 3

/

@ model

requirement 4

al

.
\
N

predictions

test
examples
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Classification Experimental Setting

Data Sources
@ Random Tree Generator
@ Random RBF Generator ol
@ LED Generator N
@ Waveform Generator l
@ Hyperplane
@ SEA Generator
@ STAGGER Generator @ mode

y requirement 4

() learning
requirements 2 & 3

/

al

.
\
N

predictions

test
examples
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Classification Experimental Setting

Classifiers
@ Naive Bayes
Decision stumps o
Hoeffding Tree :

Bagging and Boosting

ADWIN Bagging and
Leveraging Bagging

°
°
@ Hoeffding Option Tree
o
°

Prediction strategies
@ Majority class exanpls predictions
@ Naive Bayes Leaves
@ Adaptive Hybrid
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RAM-Hours

RAM-Hour
Every GB of RAM deployed for 1 hour

Cloud Computing Rental Cost Options

amazon
webservices™

COGRID
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Clustering Experimental Setting

I MOA Stream Clustering Visualization Frame

 Clustering

Setup | Visualization |

e oot Visualisation Speed
roclustering [] Clustering

Processed: 205000

®

Evaluation
Values Plot
Measure Current Mean
= . =
® e m Splt from Kernel 0 -> nui 3 [(zoominx_|
O Precsion 0,84 0,72 0,89 0,80 b
O Recll 035 062 037 073 ! \’WWM\M//\/WM
0,00 0, ), A
O R WWWMWMW
DA S
0,00 1 y y y y ;
"o s0000 100000 150000 200000 250000 300000
<
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Clustering Experimental Setting

Internal measures

External measures

Gamma

C Index

Point-Biserial

Log Likelihood

Dunn’s Index

Tau

Tau A

Tau C

Somer’'s Gamma

Ratio of Repetition
Modified Ratio of Repetition
Adjusted Ratio of Clustering
Fagan’s Index

Deviation Index

Z-Score Index

D Index

Silhouette coefficient

Rand statistic

Jaccard coefficient
Folkes and Mallow Index
Hubert I statistics
Minkowski score

Purity

van Dongen criterion
V-measure
Completeness
Homogeneity

Variation of information
Mutual information
Class-based entropy
Cluster-based entropy
Precision

Recall

F-measure

Table : Internal and external clustering evaluation measures.
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Clustering Experimental Setting

Clusterers

StreamKM++
CluStream
ClusTree
Den-Stream
D-Stream
CobWeb

Editing option: Stream

&

| dlass moa. streams. custering. RandomA B Gener storEvents v
Purpose
-~
speedRangs 0,05[3] - j—

] ‘7J

eventFrequency | s0.000 % |

j—
Ji

eventMergeWsight 0,53 -

m Reset ko defaults
“ Abbrechen
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Web

http://www.moa.cms.waikato.ac.nz

MOA Massive Online Analyss

Ll coo Q)(a)@)

MOA Massive Online Analysis

Real Time Analytics for Data Streams

-t

(‘-‘

ve ﬁaﬁ Mini
=

Ten e
=t e
\E\

)
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Easy Design of a MOA classifier

@ void resetlLearningImpl ()
@ void trainOnInstanceImpl (Instance inst)

@ double[] getVotesForInstance (Instance i)
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Easy Design of a MOA clusterer

@ void resetlLearningImpl ()
@ void trainOnInstanceImpl (Instance inst)

@ Clustering getClusteringResult ()
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Extensions of MOA

@ Multi-label Classification

@ Active Learning

@ Regression

@ Closed Frequent Graph Mining
@ Twitter Sentiment Analysis

Challenges for bigger data streams
Sampling and distributed systems (Map-Reduce, Hadoop, S4)
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MOA: Impact Downloads

MOA - Massive Online Analysis .. abitet, rkirkby

Summary Files Reviews Support Develop Hosted Apps Tracker Mailing Lists Forums — Code
| A

# Home (Change Fis) Date Range: [2007—1 1-05 to 2013-02-28

DOWNLOADS

26,696

In the selectad date range

TOP COUNTRY *

United States
18% of downloaders

TOPOS*

Windows
201001 201007 201101 201107 201201 201207  2013-01 793 ot downloaders

2008-01  2008-07 200801  2009-07
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Outline

9 Adaptive Size Sliding Window Learning
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Outline

9 Adaptive Size Sliding Window Learning
@ Classification
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Hoeffding Trees
Hoeffding Tree : VFDT

[§ Pedro Domingos and Geoff Hulten.
Mining high-speed data streams. 2000

@ With high probability, constructs an identical model that a
traditional (greedy) method would learn

@ With theoretical guarantees on the error rate

36/83



Hoeffding Naive Bayes Tree

Hoeffding Tree
Majority Class learner at leaves

Hoeffding Naive Bayes Tree

[ G.Holmes, R. Kirkby, and B. Pfahringer.
Stress-testing Hoeffding trees, 2005.
@ monitors accuracy of a Majority Class learner
@ monitors accuracy of a Naive Bayes learner
@ predicts using the most accurate method

37/83



Bagging

Poisson(1) distribution
0.4

0.3

k)

0.2

M Poisson(1)

Px:

0.1

0.0 5=

Figure : Poisson(1) Distribution.

Bagging builds a set of M base models, with a bootstrap
sample created by drawing random samples with
replacement.
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Bagging

Poisson(1) distribution
0.4

0.3

k)

0.2

M Poisson(1)

P(x:

0.1

00 n s

Figure : Poisson(1) Distribution.

Each base model’s training set contains each of the original
training example K times where P(K = k) follows a binomial
distribution.

38/83



Oza and Russell's Online Bagging for M models

1: Initialize base models hy, for all me {1,2,..., M}

2: for all training examples do

3: form=1,2,..,Mdo

4 Set w = Poisson(1)

5 Update h,, with the current example with weight w

»

: anytime output:
return hypothesis: hg,(x) = arg maxyeyth:1 I(hi(x)=Y)

N
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Data Mining Algorithms with Concept Drift

No Concept Drift

input

Counters
Countery
Counters

Counter,

O
<
=
Q

e

=2
3

Counter;

output

Concept Drift

input

DM Algorithm

output

Static Model

L

Change Detect.
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Data Mining Algorithms with Concept Drift

No Concept Drift

input
— | Counters

Countery
Counters
Counter,

Counter;

O
<
>
Q
Q
=
3

output

Concept Drift

input

DM Algorithm

Estimatorsg
Estimatory
Estimators

Estimators

Estimator

output
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Optimal Change Detector and Predictor

High accuracy
Low false positives and false negatives ratios
Theoretical guarantees

Fast detection of change
Low computational cost: minimum space and time needed

No parameters needed
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Algorithm aDaptive Sliding wINdow
Example
W={101010110111111]

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0
3 do W+ WU{x:} (i.e., add x; to the head of W)
repeat Drop elements from the tail of W
until |dw, — fiw, | > &c holds
for every split of Winto W = W, - W
Output f1yy

NOo o b
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Algorithm aDaptive Sliding wINdow
Example

W=[101010110111111]
Wo={1] W; ={01010110111111]

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0

3 do W« WuU{x;} (i.e., add x; to the head of W)
4 repeat Drop elements from the tail of W

5 until [dy, — fiw,| > & holds

6 for every split of Winto W = W, - W

7 Output fiyy
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Algorithm aDaptive Sliding wINdow
Example

W=[101010110111111]
Wo={10] W; =[1010110111111]

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0

3 do W« WuU{x;} (i.e., add x; to the head of W)
4 repeat Drop elements from the tail of W

5 until [dy, — fiw,| > & holds

6 for every split of Winto W = W, - W

7 Output fiyy
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Algorithm aDaptive Sliding wINdow
Example

W=[101010110111111]
Wo=/101] W; =/010110111111 |

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0

3 do W« WuU{x;} (i.e., add x; to the head of W)
4 repeat Drop elements from the tail of W

5 until [dy, — fiw,| > & holds

6 for every split of Winto W = W, - W

7 Output fiyy
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Algorithm aDaptive Sliding wINdow
Example

W=[101010110111111]
Wo=/1010] W; ={10110111111 |

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0

3 do W« WuU{x;} (i.e., add x; to the head of W)
4 repeat Drop elements from the tail of W

5 until [dy, — fiw,| > & holds

6 for every split of Winto W = W, - W

7 Output fiyy
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Algorithm aDaptive Sliding wINdow
Example

W=[101010110111111]
Wo=/10101] W; = 0110111111 |

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0

3 do W« WuU{x;} (i.e., add x; to the head of W)
4 repeat Drop elements from the tail of W

5 until [dy, — fiw,| > & holds

6 for every split of Winto W = W, - W

7 Output fiyy
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Algorithm aDaptive Sliding wINdow
Example
W=[101010110111111]

Wy 101010 W 1101111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0

3 do W« WuU{x;} (i.e., add x; to the head of W)
4 repeat Drop elements from the tail of W

5 until [dy, — fiw,| > & holds

6 for every split of Winto W = W, - W

7 Output fiyy
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Algorithm aDaptive Sliding wINdow
Example
W=[101010110111111]

Wy 1010101 Wy 101111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0

3 do W« WuU{x;} (i.e., add x; to the head of W)
4 repeat Drop elements from the tail of W

5 until [dy, — fiw,| > & holds

6 for every split of Winto W = W, - W

7 Output fiyy
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Algorithm aDaptive Sliding wINdow
Example

W=[101010110111111]
Wo=/10101011] W; =/ 0111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0

3 do W« WuU{x;} (i.e., add x; to the head of W)
4 repeat Drop elements from the tail of W

5 until [dy, — fiw,| > & holds

6 for every split of Winto W = W, - W

7 Output fiyy
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Algorithm aDaptive Sliding wINdow

Example

W=[101010110111111] |2, — Aw,| > & : CHANGE DET.!
Wo=/101010110] W; =[111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0

3 do W« Wu{x:} (i.e., add x; to the head of W)
4 repeat Drop elements from the tail of W

5 until [dy, — fiw,| > & holds

6 for every split of Winto W = W, - W

7 Output fiyy
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Algorithm aDaptive Sliding wINdow

Example

W=[101010110111111]| Drop elements from the tail of W
Wo=/101010110] W; =[111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0

3 do W« WuU{x;} (i.e., add x; to the head of W)
4 repeat Drop elements from the tail of W

5 until [dy, — fiw,| > & holds

6 for every split of Winto W = W, - W

7 Output fiyy
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Algorithm aDaptive Sliding wINdow

Example

W={01010110111111] Drop elements from the tail of W
Wo=/101010110] W; =[111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 foreacht>0

3 do W« WuU{x;} (i.e., add x; to the head of W)
4 repeat Drop elements from the tail of W

5 until [dy, — fiw,| > & holds

6 for every split of Winto W = W, - W

7 Output fiyy
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Algorithm aDaptive Sliding wINdow

Theorem
At every time step we have:

@ (False positive rate bound). If u; remains constant within
W, the probability that ADWIN shrinks the window at this
step is at most §.

© (False negative rate bound). Suppose that for some
partition of W in two parts WoW; (where W, contains the
most recent items) we have |uw, — uw,| > 2¢ec. Then with
probability 1 — 6 ADWIN shrinks W to W4, or shorter.

ADWIN tunes itself to the data stream at hand, with no need for
the user to hardwire or precompute parameters.
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Algorithm aDaptive Sliding wINdow

ADWIN using a Data Stream Sliding Window Model,
@ can provide the exact counts of 1’s in O(1) time per point.
@ tries O(log W) cutpoints
e uses O(1log W) memory words

@ the processing time per example is O(log W) (amortized
and worst-case).

(1010101 |[101|[11][1][1]

Content: 4 2 2 1 1
Capacity: 7 3 2 11
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Decision Trees: Hoeffding Adaptive Tree

Hoeffding Adaptive Tree:

@ replace frequency statistics counters by estimators
e don’'t need a window to store examples, due to the fact that
we maintain the statistics data needed with estimators
@ change the way of checking the substitution of alternate
subtrees, using a change detector with theoretical
guarantees

Advantages over CVFDT:
@ Theoretical guarantees

@ No Parameters

45/83



ADWIN Bagging (KDD'09)

ADWIN

An adaptive sliding window whose size is recomputed online
according to the rate of change observed.

ADWIN has rigorous guarantees (theorems)
@ On ratio of false positives and negatives

@ On the relation of the size of the current window and
change rates

ADWIN Bagging

When a change is detected, the worst classifier is removed and
a new classifier is added.

v
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Leveraging Bagging for Evolving
Data Streams

Randomization as a powerful tool to increase accuracy and
diversity

There are three ways of using randomization:
@ Manipulating the input data
@ Manipulating the classifier algorithms
@ Manipulating the output targets
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Leveraging Bagging for Evolving Data Streams

Leveraging Bagging
@ Using Poisson(1)

Leveraging Bagging MC
@ Using Poisson(A) and Random Output Codes

Fast Leveraging Bagging ME
@ if an instance is misclassified: weight = 1
@ if not: weight = er/(1—er),
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Empirical evaluation

Accuracy | RAM-Hours
Hoeffding Tree 74.03% 0.01
Online Bagging 77.15% 2.98
ADWIN Bagging 79.24% 1.48
Leveraging Bagging 85.54% 20.17
Leveraging Bagging MC | 85.37% 22.04
Leveraging Bagging ME | 80.77% 0.87

Leveraging Bagging
@ Leveraging Bagging
e Using Poisson(A)
@ Leveraging Bagging MC

e Using Poisson(1) and Random Output Codes

@ Leveraging Bagging ME

e Using weight 1 if misclassified, otherwise er/(1—er)
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9 Adaptive Size Sliding Window Learning

@ Active Learning
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Active Learning

[ . Zliobaité, A. Bifet, B. Pfahringer, G. Holmes
Active learning with evolving streaming data

ACTIVE LEARNING FRAMEWORK
Input: labeling budget B and strategy parameters

1 for each X; - incoming instance,

2 do if ACTIVE LEARNING STRATEGY(X;,B,...) = true

3 then request the true label y; of instance X;

4 train classifier L with (X3, yt)

5 if L, exists then train classifier L, with (X;, yt)
6 if change warning is signaled

7 then start a new classifier L,

8 if change is detected

9 then replace classifier L with L,
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Active Learning

[ I. Zliobaité, A. Bifet, B. Pfahringer, G. Holmes
Active learning with evolving streaming data

Controlling Instance space

Budget Coverage
Random present full
Fixed uncertainty no fragment
Variable uncertainty handled fragment
Randomized uncertainty  handled full

Table : Summary of strategies.
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9 Adaptive Size Sliding Window Learning

@ Multi-label Classification
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Multi-label classification

3 - P
[
- - Y

@ Binary Classification: e.g. is this a beach? € {No, vYes}
@ Multi-class Classification: e.g. what is this?

€ {Beach, Forest, City, People}
@ Multi-label Classification: e.g. which of these?

C {Beach, Forest, City, People }
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Methods for Multi-label Classification

Problem Transformation: Using off-the-shelf binary / multi-class
classifiers for multi-label learning.
@ Binary Relevance method (BR)

@ One binary classifier for each label:

@ simple; flexible; fast but does not explicitly model label
dependencies

@ Label Powerset method (LP)
@ One multi-class classifier; one class for each labelset
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Data Streams Multi-label Classification

@ Adaptive Ensembles of Classifier Chains (ECC)

e Hoeffding trees as base-classifiers reset classifiers based
on current performance / concept drift

@ Multi-label Hoeffding Tree

o Label Powerset method (LP) at the leaves an ensemble
strategy to deal with concept drift

@ MOA Multi-label Setting

e generating synthetic multi-label data streams
e setting a benchmark on real-world and synthetic data
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@ Frequent Pattern Mining
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Pattern Mining

Dataset Example

Document Patterns Class
di abce yes
d2 cde no
d3 abce yes
d4 acde no
d5 abcde no
d6é bcd yes

v

Classification using patterns: mapping from patterns to vectors
of attributes
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ltemset Mining

di abce Support  Frequent

d2 cde 6 c

d3 abce S e,ce

d4 acde 4 a,ac,ae,ace

d5 abcde 4 b,bc

dé bcd 4 d,cd

——— 3 ab,abc,abe
be,bce,abce

3 de,cde
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ltemset Mining

d1
d2
d3
d4
d5
dé

abce
cde
abce
acde
abcde
bcd

Support Frequent Gen Closed

6 c c c

5 e,ce e ce

4 a,ac,ae,ace a ace

4 b,bc b bc

4 d,cd d cd

3 ab,abc,abe ab
be,bce,abce be abce

3 de,cde de cde
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ltemset Mining

d1
d2
d3
d4
d5
dé

abce
cde
abce
acde
abcde
bcd

Support Frequent Gen Closed Max
6 c c c
5 e,ce e ce
4 a,ac,ae,ace a ace
4 b,bc b bc
4 d,cd d cd
3 ab,abc,abe ab

be,bce,abce be

abce abce

de,cde de

cde cde
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Graph Coresets KDD'11

Coreset of a set P with respect to some problem
Small subset that approximates the original set P.

@ Solving the problem for the coreset provides an
approximate solution for the problem on P.

o-tolerance Closed Graph
A graph g is §-tolerance closed if none of its proper frequent
supergraphs has a weighted support < (1 —98) - support(g).
@ Maximal graph: 1-tolerance closed graph
@ Closed graph: 0-tolerance closed graph.
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Graph Coresets KDD'11

Relative support of a closed graph
Support of a graph minus the relative support of its closed
supergraphs.
@ The sum of the closed supergraphs’ relative supports of a
graph is equal to its own support.

(s,8)-coreset for the problem of computing closed graphs

Weighted multiset of frequent d-tolerance closed graphs with
minimum support s using their relative support as a weight.
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Graph Dataset

Transaction Id Graph Weight
©
- C - ‘ -
1 O 1
©
- C - ‘ -
2 C 1
o]
C-S-N
3 C 1
[l
4 G- 1
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Graph Coresets

Graph Relative Support | Support
C-C-S-N 3 3
O
C-S-N 3 3
N
C- 3 3

Table : Example of a coreset with minimum support 50% and 6 = 1

62 /83



Graph Coresets

Open NCI Database
800

600

400

T oM g o b Q‘a o Q‘ll o ® A
4]
M number of araphs in a (0.4. §)- coreset

Figure : Number of graphs in (40%, &) for NCI.
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ChemDB dataset

Memory ChemDB Dataset

50000
45000 1
40000 1
35000
30000 |
25000 4/

|

20000 -
15000 1 .
10000 %_;

Megabytes

5000
0
N I R R N R R R R SRR
FEFPFLFFEILFEFEEFEEEFEL LSS
SR N N N N MDA NENENINHAN
NS 0D PP P AN S P S
NTRNTRIRT 0 97 47 4t o o o o o

Instances

IncGraphMiner - - IncGraphMiner-C — MoSS cIoseGraph\
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ChemDB dataset

Time ChemDB Dataset

Seconds
nN
(&)
o
o
!

I I N N N N R N N R N N NN
FIEIFEIFEFLFEILFELSLEELSESSESESSESS
\°@’\“QQ%Q@QQQ,Q@@@b~°’\°@°%°@°%°ﬂ9
L O ISR S B oS P (1, E S
Q¥ ¢ o> o o'
Instances

IncGraphMiner - - IncGraphMiner-C — MoSS cIoseGraph\
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New Techniques: Distributed Systems

Google
YaHoO!
facebook

Hadoop, S4 and Storm
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Hadoop

Hadoop
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Hadoop

Data

data data data da

data data data data data
data data data data data

data data data data data
data data data data data
dlata data dats data data

Compute Cluster

/'

Results

|, o]

Reduce |
s ti0c] MaB | I I

data data data data data

IDISBIQ(I(]

iata data data data data
dlata data dats data data

Hadoop architecture

DFS Block 3
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Apache Mahout

Mahout: open source framework
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Apache S4

S distributed stream
computing platform

Apache S4
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Apache S4

A keyless event (EV) arrives at PE1 with quote:
EV.  Quote ‘meant what | said and | said what | meant.", Dr. Seuss
KEY 1 QuoteSplitterPE (PE1) counts unique
VAL oguotesiluce words in Quote and emits events for
each word.

EV WordEvent
.+ KEY _ wor
VAL _ count=4

WordCountPE (PE2-4)
keeps total counts for
each word across all
quotes. Emits an event
any time a count is
updated.

EV WordEvent

EV UpdatedCountEv
KEY sortiD=2 I
VAL _ word

EV UpdatedCountEv
" KEY sortID=9
VAL _ word="i" count=35

SortPE (PE5-7)
continuously sorts partial
lists. Emits lists at periodic
intervals

MergePE (PE8) combines partial
TopK lists and outputs final
TopK list.

EV PartialTopKEv. |
KEY _ topk=1234 _ °
VAL words={w:cnt}

" PE Name Key Tuple
QuoteSplitterPE null
WordCountPE  word=
WordCountPE  word="i
_SortPE sortiD=2
SortPE sortID=9
“MergePE topk=1234

aid"
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Storm

Ywivsewl

Storm from Twitter
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Storm

D

Stream, Spout, Bolt, Topology
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Storm

Tools
ElephantDB, Voldemort
_Hadoop e
batch view
data
Storm
Precomputed
/ realtime view
New data stream Storm
Kafka Cassandra, Riak, HBase

“Lambda Architecture”

Runaway complexity in Big Data
Nathan Marz, 2012
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SAMOA

SAMOA: MOA + S4/Storm
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SAMOA

Machine
Learning

[\[e]y]

Distributed Distributed

Hadoop S4, Storm

Mahout
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SAMOA

Frequent
Pattern
Mining

Classifier i Clustering

Methods Methods

]
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Vertical Hoeffding Tree

aggregate local statistic to global decision tree

subset of attributes

G—insta nce—m

source PI model-aggregator

local-statistic Pl
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Summary

{M}assive {O}nline {A}nalysis is a framework for online
learning from data streams.

http://moa.cs.waikato.ac.nz

@ ltis closely related to WEKA

@ It includes a collection of offline and online as well as tools
for evaluation:

e classification
e clustering
e frequent pattern mining

@ MOA deals with evolving data streams
@ MOA is easy to use and extend

80/83



SAMOA

SAMOA: MOA + S4/Storm
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Thanks!

© 0 0/ [ sam0A scalable Advance: x

€« C' | [ samoa-project.net

SAMOA Scalable Advanced Massive Online Analysis

WELCOME TO SAMOA!

Upcoming BIG DATA Mining Project! The goal of SAMOA
using a cluster/cloud environment. In particular, we are inter
and S4 (http/incubator.apache.org/sé/) as the un

provide a framework
ed in using Stom (http:
omputational framework.

T mining data streams
m-project net

1lying
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