
Mining Big Data in Real Time

Albert Bifet

Dortmund, 24 October 2013

1 / 83

Albert Bifet

2004-2009
Ph. D. Degree
UPC-Barcelona Tech
Advisors: Ricard Gavaldà
and José L. Balcázar.

2009-2012
Post-Doctoral Researcher
University of Waikato,
Hamilton, New Zealand

20011-2013
Researcher
Yahoo! Research Barcelona

2 / 83

Albert Bifet

2004-2009
Ph. D. Degree
UPC-Barcelona Tech
Advisors: Ricard Gavaldà
and José L. Balcázar.

2009-2012
Post-Doctoral Researcher
University of Waikato,
Hamilton, New Zealand

20011-2013
Researcher
Yahoo! Research Barcelona

2 / 83

MOA-SAMOA

3 / 83

New Zealand

4 / 83

Hamilton

5 / 83

Outline

1 MOA: Massive Online Analysis

2 Adaptive Size Sliding Window Learning
Classification
Active Learning
Multi-label Classification
Frequent Pattern Mining

3 Summary and Future Work: SAMOA

6 / 83

Outline

1 MOA: Massive Online Analysis

2 Adaptive Size Sliding Window Learning
Classification
Active Learning
Multi-label Classification
Frequent Pattern Mining

3 Summary and Future Work: SAMOA

7 / 83

Data Streams

Big Data & Real Time

8 / 83

Big Data

McKinsey Global Institute (MGI) Report on Big Data, 2011.

Big data refers to datasets whose size is beyond
the ability of typical database software tools to

capture, store, manage, and analyze.

9 / 83

BIG Data

Volume
Variety
Velocity

3 Vs

10 / 83

BIG Data

Volume
Variety
Velocity

Variability
Value
Veracity

6 Vs

11 / 83

Methodology

Distributed systems

12 / 83

Methodology

Paolo Boldi
Facebook Four degrees of separation

Big Data does not need big machines,
it needs big intelligence

13 / 83

Introduction: Data Streams
Data Streams

Sequence is potentially infinite
High amount of data: sublinear space
High speed of arrival: sublinear time per example
Once an element from a data stream has been processed
it is discarded or archived

Example
Puzzle: Finding Missing Numbers

Let π be a permutation of {1, . . . ,n}.
Let π−1 be π with one element
missing.
π−1[i] arrives in increasing order

Task: Determine the missing number

14 / 83

Introduction: Data Streams
Data Streams

Sequence is potentially infinite
High amount of data: sublinear space
High speed of arrival: sublinear time per example
Once an element from a data stream has been processed
it is discarded or archived

Example
Puzzle: Finding Missing Numbers

Let π be a permutation of {1, . . . ,n}.
Let π−1 be π with one element
missing.
π−1[i] arrives in increasing order

Task: Determine the missing number

Use a n-bit
vector to
memorize all the
numbers (O(n)
space)

14 / 83

Introduction: Data Streams
Data Streams

Sequence is potentially infinite
High amount of data: sublinear space
High speed of arrival: sublinear time per example
Once an element from a data stream has been processed
it is discarded or archived

Example
Puzzle: Finding Missing Numbers

Let π be a permutation of {1, . . . ,n}.
Let π−1 be π with one element
missing.
π−1[i] arrives in increasing order

Task: Determine the missing number

Data Streams:
O(log(n)) space.

14 / 83

Introduction: Data Streams
Data Streams

Sequence is potentially infinite
High amount of data: sublinear space
High speed of arrival: sublinear time per example
Once an element from a data stream has been processed
it is discarded or archived

Example
Puzzle: Finding Missing Numbers

Let π be a permutation of {1, . . . ,n}.
Let π−1 be π with one element
missing.
π−1[i] arrives in increasing order

Task: Determine the missing number

Data Streams:
O(log(n)) space.
Store

n(n + 1)

2
−∑

j≤i
π−1[j].

14 / 83

Data Streams

Data Streams
Sequence is potentially infinite
High amount of data: sublinear space
High speed of arrival: sublinear time per example
Once an element from a data stream has been processed
it is discarded or archived

Tools:
approximation
randomization, sampling
sketching

15 / 83

Data Streams

Data Streams
Sequence is potentially infinite
High amount of data: sublinear space
High speed of arrival: sublinear time per example
Once an element from a data stream has been processed
it is discarded or archived

Approximation algorithms
Small error rate with high probability
An algorithm (ε,δ)−approximates F if it outputs F̃ for
which Pr[|F̃ −F |> εF] < δ .

15 / 83

Data Streams Approximation Algorithms

1011000111 1010101

Sliding Window
We can maintain simple statistics over sliding windows, using
O(1

ε
log2 N) space, where
N is the length of the sliding window
ε is the accuracy parameter

M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. 2002

16 / 83

Data Streams Approximation Algorithms

10110001111 0101011

Sliding Window
We can maintain simple statistics over sliding windows, using
O(1

ε
log2 N) space, where
N is the length of the sliding window
ε is the accuracy parameter

M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. 2002

16 / 83

Data Streams Approximation Algorithms

101100011110 1010111

Sliding Window
We can maintain simple statistics over sliding windows, using
O(1

ε
log2 N) space, where
N is the length of the sliding window
ε is the accuracy parameter

M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. 2002

16 / 83

Data Streams Approximation Algorithms

1011000111101 0101110

Sliding Window
We can maintain simple statistics over sliding windows, using
O(1

ε
log2 N) space, where
N is the length of the sliding window
ε is the accuracy parameter

M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. 2002

16 / 83

Data Streams Approximation Algorithms

10110001111010 1011101

Sliding Window
We can maintain simple statistics over sliding windows, using
O(1

ε
log2 N) space, where
N is the length of the sliding window
ε is the accuracy parameter

M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. 2002

16 / 83

Data Streams Approximation Algorithms

101100011110101 0111010

Sliding Window
We can maintain simple statistics over sliding windows, using
O(1

ε
log2 N) space, where
N is the length of the sliding window
ε is the accuracy parameter

M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. 2002

16 / 83

What is MOA?

{M}assive {O}nline {A}nalysis is a framework for online
learning from data streams.

It is closely related to WEKA
It includes a collection of offline and online as well as tools
for evaluation:

classification
clustering

Easy to extend
Easy to design and run experiments

17 / 83

History - timeline
WEKA

1993 - WEKA : project starts (Ian Witten)
1996 - First public release of WEKA in C
Early 1997 - decision was made to rewrite WEKA in Java
Mid 1999 - WEKA 3 (100% Java) released

MOA
Nov 2007 - First public release of MOA: Richard Kirkby
Thesis
2009 - MOA Concept Drift
2010 - MOA Clustering
2011 - MOA Graph Mining, Multi-label classification, Twitter
Reader, Active Learning
2013 - MOA Outlier

18 / 83

WEKA

Waikato Environment for Knowledge Analysis
Collection of state-of-the-art machine learning algorithms
and data processing tools implemented in Java

Released under the GPL
Support for the whole process of experimental data mining

Preparation of input data
Statistical evaluation of learning schemes
Visualization of input data and the result of learning

Used for education, research and applications
Complements “Data Mining” by Witten & Frank & Hall

19 / 83

WEKA: Impact Downloads

20 / 83

WEKA: the bird

21 / 83

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the
Weka, but also extinct.

22 / 83

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the
Weka, but also extinct.

22 / 83

MOA: the bird

The Moa (another native NZ bird) is not only flightless, like the
Weka, but also extinct.

22 / 83

Classification Experimental Setting

23 / 83

Classification Experimental Setting

Evaluation procedures for Data
Streams

Holdout
Interleaved Test-Then-Train or
Prequential

24 / 83

Classification Experimental Setting

Data Sources
Random Tree Generator
Random RBF Generator
LED Generator
Waveform Generator
Hyperplane
SEA Generator
STAGGER Generator

24 / 83

Classification Experimental Setting

Classifiers
Naive Bayes
Decision stumps
Hoeffding Tree
Hoeffding Option Tree
Bagging and Boosting
ADWIN Bagging and
Leveraging Bagging

Prediction strategies
Majority class
Naive Bayes Leaves
Adaptive Hybrid

24 / 83

RAM-Hours

RAM-Hour
Every GB of RAM deployed for 1 hour

Cloud Computing Rental Cost Options

25 / 83

Clustering Experimental Setting

26 / 83

Clustering Experimental Setting
Internal measures External measures
Gamma Rand statistic
C Index Jaccard coefficient
Point-Biserial Folkes and Mallow Index
Log Likelihood Hubert Γ statistics
Dunn’s Index Minkowski score
Tau Purity
Tau A van Dongen criterion
Tau C V-measure
Somer’s Gamma Completeness
Ratio of Repetition Homogeneity
Modified Ratio of Repetition Variation of information
Adjusted Ratio of Clustering Mutual information
Fagan’s Index Class-based entropy
Deviation Index Cluster-based entropy
Z-Score Index Precision
D Index Recall
Silhouette coefficient F-measure

Table : Internal and external clustering evaluation measures.
27 / 83

Clustering Experimental Setting

Clusterers
StreamKM++
CluStream
ClusTree
Den-Stream
D-Stream
CobWeb

28 / 83

Web

http://www.moa.cms.waikato.ac.nz

29 / 83

Easy Design of a MOA classifier

void resetLearningImpl ()

void trainOnInstanceImpl (Instance inst)

double[] getVotesForInstance (Instance i)

30 / 83

Easy Design of a MOA clusterer

void resetLearningImpl ()

void trainOnInstanceImpl (Instance inst)

Clustering getClusteringResult()

31 / 83

Extensions of MOA

Multi-label Classification
Active Learning
Regression
Closed Frequent Graph Mining
Twitter Sentiment Analysis

Challenges for bigger data streams
Sampling and distributed systems (Map-Reduce, Hadoop, S4)

32 / 83

MOA: Impact Downloads

33 / 83

Outline

1 MOA: Massive Online Analysis

2 Adaptive Size Sliding Window Learning
Classification
Active Learning
Multi-label Classification
Frequent Pattern Mining

3 Summary and Future Work: SAMOA

34 / 83

Outline

1 MOA: Massive Online Analysis

2 Adaptive Size Sliding Window Learning
Classification
Active Learning
Multi-label Classification
Frequent Pattern Mining

3 Summary and Future Work: SAMOA

35 / 83

Hoeffding Trees
Hoeffding Tree : VFDT

Pedro Domingos and Geoff Hulten.
Mining high-speed data streams. 2000

With high probability, constructs an identical model that a
traditional (greedy) method would learn
With theoretical guarantees on the error rate

Time

Contains “Money”

YES
Yes

NO
No

Day

YES

Night

36 / 83

Hoeffding Naive Bayes Tree

Hoeffding Tree
Majority Class learner at leaves

Hoeffding Naive Bayes Tree

G. Holmes, R. Kirkby, and B. Pfahringer.
Stress-testing Hoeffding trees, 2005.

monitors accuracy of a Majority Class learner
monitors accuracy of a Naive Bayes learner
predicts using the most accurate method

37 / 83

Bagging

Figure : Poisson(1) Distribution.

Bagging builds a set of M base models, with a bootstrap
sample created by drawing random samples with
replacement.

38 / 83

Bagging

Figure : Poisson(1) Distribution.

Each base model’s training set contains each of the original
training example K times where P(K = k) follows a binomial
distribution.

38 / 83

Oza and Russell’s Online Bagging for M models

1: Initialize base models hm for all m ∈ {1,2, ...,M}
2: for all training examples do
3: for m = 1,2, ...,M do
4: Set w = Poisson(1)
5: Update hm with the current example with weight w

6: anytime output:
7: return hypothesis: hfin(x) = argmaxy∈Y ∑

T
t=1 I(ht (x) = y)

39 / 83

Data Mining Algorithms with Concept Drift

No Concept Drift

-
input output

DM Algorithm

-

Counter1

Counter2

Counter3

Counter4

Counter5

Concept Drift

-
input output

DM Algorithm

Static Model

-

Change Detect.
-

6

�

40 / 83

Data Mining Algorithms with Concept Drift

No Concept Drift

-
input output

DM Algorithm

-

Counter1

Counter2

Counter3

Counter4

Counter5

Concept Drift

-
input output

DM Algorithm

-

Estimator1

Estimator2

Estimator3

Estimator4

Estimator5

40 / 83

Optimal Change Detector and Predictor

High accuracy
Low false positives and false negatives ratios
Theoretical guarantees

Fast detection of change
Low computational cost: minimum space and time needed

No parameters needed

41 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 101010110111111
W0= 1

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 101010110111111
W0= 1 W1 = 01010110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 101010110111111
W0= 10 W1 = 1010110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 101010110111111
W0= 101 W1 = 010110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 101010110111111
W0= 1010 W1 = 10110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 101010110111111
W0= 10101 W1 = 0110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 101010110111111
W0= 101010 W1 = 110111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 101010110111111
W0= 1010101 W1 = 10111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 101010110111111
W0= 10101011 W1 = 0111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 101010110111111 |µ̂W0− µ̂W1 | ≥ εc : CHANGE DET.!

W0= 101010110 W1 = 111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 101010110111111 Drop elements from the tail of W
W0= 101010110 W1 = 111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow
Example

W= 01010110111111 Drop elements from the tail of W
W0= 101010110 W1 = 111111

ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪{xt} (i.e., add xt to the head of W)
4 repeat Drop elements from the tail of W
5 until |µ̂W0− µ̂W1 | ≥ εc holds
6 for every split of W into W = W0 ·W1
7 Output µ̂W

42 / 83

Algorithm ADaptive Sliding WINdow

Theorem
At every time step we have:

1 (False positive rate bound). If µt remains constant within
W, the probability that ADWIN shrinks the window at this
step is at most δ .

2 (False negative rate bound). Suppose that for some
partition of W in two parts W0W1 (where W1 contains the
most recent items) we have |µW0−µW1 |> 2εc . Then with
probability 1−δ ADWIN shrinks W to W1, or shorter.

ADWIN tunes itself to the data stream at hand, with no need for
the user to hardwire or precompute parameters.

43 / 83

Algorithm ADaptive Sliding WINdow

ADWIN using a Data Stream Sliding Window Model,
can provide the exact counts of 1’s in O(1) time per point.
tries O(logW) cutpoints
uses O(1

ε
logW) memory words

the processing time per example is O(logW) (amortized
and worst-case).

Sliding Window Model

1010101 101 11 1 1
Content: 4 2 2 1 1
Capacity: 7 3 2 1 1

44 / 83

Decision Trees: Hoeffding Adaptive Tree

Hoeffding Adaptive Tree:
replace frequency statistics counters by estimators

don’t need a window to store examples, due to the fact that
we maintain the statistics data needed with estimators

change the way of checking the substitution of alternate
subtrees, using a change detector with theoretical
guarantees

Advantages over CVFDT:
1 Theoretical guarantees
2 No Parameters

45 / 83

ADWIN Bagging (KDD’09)

ADWIN

An adaptive sliding window whose size is recomputed online
according to the rate of change observed.

ADWIN has rigorous guarantees (theorems)
On ratio of false positives and negatives
On the relation of the size of the current window and
change rates

ADWIN Bagging
When a change is detected, the worst classifier is removed and
a new classifier is added.

46 / 83

Leveraging Bagging for Evolving
Data Streams

Randomization as a powerful tool to increase accuracy and
diversity

There are three ways of using randomization:
Manipulating the input data
Manipulating the classifier algorithms
Manipulating the output targets

47 / 83

Leveraging Bagging for Evolving Data Streams

Leveraging Bagging
Using Poisson(λ)

Leveraging Bagging MC
Using Poisson(λ) and Random Output Codes

Fast Leveraging Bagging ME
if an instance is misclassified: weight = 1
if not: weight = eT/(1−eT),

48 / 83

Empirical evaluation
Accuracy RAM-Hours

Hoeffding Tree 74.03% 0.01
Online Bagging 77.15% 2.98
ADWIN Bagging 79.24% 1.48
Leveraging Bagging 85.54% 20.17
Leveraging Bagging MC 85.37% 22.04
Leveraging Bagging ME 80.77% 0.87

Leveraging Bagging
Leveraging Bagging

Using Poisson(λ)

Leveraging Bagging MC
Using Poisson(λ) and Random Output Codes

Leveraging Bagging ME
Using weight 1 if misclassified, otherwise eT /(1−eT)

49 / 83

Outline

1 MOA: Massive Online Analysis

2 Adaptive Size Sliding Window Learning
Classification
Active Learning
Multi-label Classification
Frequent Pattern Mining

3 Summary and Future Work: SAMOA

50 / 83

Active Learning

I. Zliobaitė, A. Bifet, B. Pfahringer, G. Holmes
Active learning with evolving streaming data

ACTIVE LEARNING FRAMEWORK

Input: labeling budget B and strategy parameters

1 for each Xt - incoming instance,
2 do if ACTIVE LEARNING STRATEGY(Xt ,B, . . .) = true
3 then request the true label yt of instance Xt
4 train classifier L with (Xt ,yt)
5 if Ln exists then train classifier Ln with (Xt ,yt)
6 if change warning is signaled
7 then start a new classifier Ln
8 if change is detected
9 then replace classifier L with Ln

51 / 83

Active Learning

I. Zliobaitė, A. Bifet, B. Pfahringer, G. Holmes
Active learning with evolving streaming data

Controlling Instance space
Budget Coverage

Random present full
Fixed uncertainty no fragment
Variable uncertainty handled fragment
Randomized uncertainty handled full

Table : Summary of strategies.

51 / 83

Outline

1 MOA: Massive Online Analysis

2 Adaptive Size Sliding Window Learning
Classification
Active Learning
Multi-label Classification
Frequent Pattern Mining

3 Summary and Future Work: SAMOA

52 / 83

Multi-label classification

Binary Classification: e.g. is this a beach? ∈ {No, Yes}
Multi-class Classification: e.g. what is this?
∈ {Beach, Forest, City, People}
Multi-label Classification: e.g. which of these?
⊆ {Beach, Forest, City, People }

53 / 83

Methods for Multi-label Classification

Problem Transformation: Using off-the-shelf binary / multi-class
classifiers for multi-label learning.

Binary Relevance method (BR)
One binary classifier for each label:

simple; flexible; fast but does not explicitly model label
dependencies

Label Powerset method (LP)
One multi-class classifier; one class for each labelset

54 / 83

Data Streams Multi-label Classification

Adaptive Ensembles of Classifier Chains (ECC)
Hoeffding trees as base-classifiers reset classifiers based
on current performance / concept drift

Multi-label Hoeffding Tree
Label Powerset method (LP) at the leaves an ensemble
strategy to deal with concept drift

MOA Multi-label Setting
generating synthetic multi-label data streams
setting a benchmark on real-world and synthetic data

55 / 83

Outline

1 MOA: Massive Online Analysis

2 Adaptive Size Sliding Window Learning
Classification
Active Learning
Multi-label Classification
Frequent Pattern Mining

3 Summary and Future Work: SAMOA

56 / 83

Pattern Mining

Dataset Example
Document Patterns Class

d1 abce yes
d2 cde no
d3 abce yes
d4 acde no
d5 abcde no
d6 bcd yes

Classification using patterns: mapping from patterns to vectors
of attributes

57 / 83

Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

Support Frequent
6 c
5 e,ce
4 a,ac,ae,ace
4 b,bc
4 d,cd
3 ab,abc,abe

be,bce,abce
3 de,cde

58 / 83

Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

Support Frequent Gen Closed
6 c c c
5 e,ce e ce
4 a,ac,ae,ace a ace
4 b,bc b bc
4 d,cd d cd
3 ab,abc,abe ab

be,bce,abce be abce
3 de,cde de cde

58 / 83

Itemset Mining

d1 abce
d2 cde
d3 abce
d4 acde
d5 abcde
d6 bcd

Support Frequent Gen Closed Max
6 c c c
5 e,ce e ce
4 a,ac,ae,ace a ace
4 b,bc b bc
4 d,cd d cd
3 ab,abc,abe ab

be,bce,abce be abce abce
3 de,cde de cde cde

58 / 83

Graph Coresets KDD’11

Coreset of a set P with respect to some problem
Small subset that approximates the original set P.

Solving the problem for the coreset provides an
approximate solution for the problem on P.

δ -tolerance Closed Graph
A graph g is δ -tolerance closed if none of its proper frequent
supergraphs has a weighted support ≤ (1−δ) ·support(g).

Maximal graph: 1-tolerance closed graph
Closed graph: 0-tolerance closed graph.

59 / 83

Graph Coresets KDD’11

Relative support of a closed graph
Support of a graph minus the relative support of its closed
supergraphs.

The sum of the closed supergraphs’ relative supports of a
graph is equal to its own support.

(s,δ)-coreset for the problem of computing closed graphs
Weighted multiset of frequent δ -tolerance closed graphs with
minimum support s using their relative support as a weight.

60 / 83

Graph Dataset
Transaction Id Graph Weight

1

C C S N

O

O 1

2

C C S N

O

C 1

3

C S N

O

C 1

4 C C S N

N

1

61 / 83

Graph Coresets

Graph Relative Support Support
C C S N 3 3

C S N

O

3 3

C S

N

3 3

Table : Example of a coreset with minimum support 50% and δ = 1

62 / 83

Graph Coresets

Figure : Number of graphs in (40%,δ) for NCI.

63 / 83

ChemDB dataset

Memory ChemDB Dataset

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

10
.0

00

24
0.

00
0

47
0.

00
0

70
0.

00
0

93
0.

00
0

1.
16

0.
00

0

1.
39

0.
00

0

1.
62

0.
00

0

1.
85

0.
00

0

2.
08

0.
00

0

2.
31

0.
00

0

2.
54

0.
00

0

2.
77

0.
00

0

3.
00

0.
00

0

3.
23

0.
00

0

3.
46

0.
00

0

3.
69

0.
00

0

3.
92

0.
00

0

Instances

M
e

g
a

b
y

te
s

IncGraphMiner IncGraphMiner-C MoSS closeGraph

64 / 83

ChemDB dataset

Time ChemDB Dataset

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

10
.0

00

24
0.

00
0

47
0.

00
0

70
0.

00
0

93
0.

00
0

1.
16

0.
00

0

1.
39

0.
00

0

1.
62

0.
00

0

1.
85

0.
00

0

2.
08

0.
00

0

2.
31

0.
00

0

2.
54

0.
00

0

2.
77

0.
00

0

3.
00

0.
00

0

3.
23

0.
00

0

3.
46

0.
00

0

3.
69

0.
00

0

3.
92

0.
00

0

Instances

S
e

c
o

n
d

s

IncGraphMiner IncGraphMiner-C MoSS closeGraph

65 / 83

Outline

1 MOA: Massive Online Analysis

2 Adaptive Size Sliding Window Learning
Classification
Active Learning
Multi-label Classification
Frequent Pattern Mining

3 Summary and Future Work: SAMOA

66 / 83

New Techniques: Distributed Systems

Hadoop, S4 and Storm

67 / 83

Hadoop

Hadoop

68 / 83

Hadoop

Hadoop architecture

69 / 83

Apache Mahout

Mahout: open source framework

70 / 83

Apache S4

Apache S4

71 / 83

Apache S4

72 / 83

Storm

Storm from Twitter

73 / 83

Storm

Stream, Spout, Bolt, Topology

74 / 83

Storm
Tools

All
data

Precomputed
batch view

Query

Precomputed
realtime view

New data stream

Hadoop

Storm

“Lambda Architecture”

Storm

ElephantDB, Voldemort

Cassandra, Riak, HBase
Kafka

Runaway complexity in Big Data
Nathan Marz, 2012

75 / 83

SAMOA

SAMOA: MOA + S4/Storm

76 / 83

SAMOA

77 / 83

SAMOA

78 / 83

Vertical Hoeffding Tree

subset of attributes

aggregate local statistic to global decision tree

model-aggregator PI

local-statistic PI

source PI

instance

79 / 83

Summary
{M}assive {O}nline {A}nalysis is a framework for online
learning from data streams.

http://moa.cs.waikato.ac.nz

It is closely related to WEKA
It includes a collection of offline and online as well as tools
for evaluation:

classification
clustering
frequent pattern mining

MOA deals with evolving data streams
MOA is easy to use and extend

80 / 83

SAMOA

SAMOA: MOA + S4/Storm

81 / 83

Thanks!

82 / 83

	MOA: Massive Online Analysis
	Adaptive Size Sliding Window Learning
	Classification
	Active Learning
	Multi-label Classification
	Frequent Pattern Mining

	Summary and Future Work: SAMOA

